Degree Theory for Equivariant Maps, the General $S^1$-Action

Degree Theory for Equivariant Maps, the General $S^1$-Action PDF Author: Jorge Ize
Publisher: American Mathematical Soc.
ISBN: 0821825429
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
In this paper, we consider general [italic]S1-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S1-degree is given by the usual degree of the invariant part, while for one parameter [italic]S1-maps one has an integer for each isotropy subgroup different from [italic]S1. In particular we recover all the [italic]S1-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S1-degree. The applications concern essentially periodic solutions of ordinary differential equations.

Degree Theory for Equivariant Maps, the General $S^1$-Action

Degree Theory for Equivariant Maps, the General $S^1$-Action PDF Author: Jorge Ize
Publisher: American Mathematical Soc.
ISBN: 0821825429
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
In this paper, we consider general [italic]S1-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S1-degree is given by the usual degree of the invariant part, while for one parameter [italic]S1-maps one has an integer for each isotropy subgroup different from [italic]S1. In particular we recover all the [italic]S1-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S1-degree. The applications concern essentially periodic solutions of ordinary differential equations.

Enright-Shelton Theory and Vogan's Problem for Generalized Principal Series

Enright-Shelton Theory and Vogan's Problem for Generalized Principal Series PDF Author: Brian D. Boe
Publisher: American Mathematical Soc.
ISBN: 082182547X
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
This book investigates the composition series of generalized principal series representations induced from a maximal cuspidal parabolic subgroup of a real reductive Lie group. Boe and Collingwood study when such representations are multiplicity-free (Vogan's Problem #3) and the problem of describing their composition factors in closed form. The results obtained are strikingly similar to those of Enright and Shelton for highest weight modules. Connections with two different flag variety decompositions are discussed.

Deformation Quantization for Actions of $R^d$

Deformation Quantization for Actions of $R^d$ PDF Author: Marc Aristide Rieffel
Publisher: American Mathematical Soc.
ISBN: 0821825755
Category : Mathematics
Languages : en
Pages : 110

Get Book Here

Book Description
This work describes a general construction of a deformation quantization for any Poisson bracket on a manifold which comes from an action of R ]d on that manifold. These deformation quantizations are strict, in the sense that the deformed product of any two functions is again a function and that there are corresponding involutions and operator norms. Many of the techniques involved are adapted from the theory of pseudo-differential operators. The construction is shown to have many favorable properties. A number of specific examples are described, ranging from basic ones such as quantum disks, quantum tori, and quantum spheres, to aspects of quantum groups.

Orientation and the Leray-Schauder Theory for Fully Nonlinear Elliptic Boundary Value Problems

Orientation and the Leray-Schauder Theory for Fully Nonlinear Elliptic Boundary Value Problems PDF Author: Patrick Fitzpatrick
Publisher: American Mathematical Soc.
ISBN: 0821825445
Category : Mathematics
Languages : en
Pages : 145

Get Book Here

Book Description
The aim of this work is to develop an additive, integer-valued degree theory for the class of quasilinear Fredholm mappings. This class is sufficiently large that, within its framework, one can study general fully nonlinear elliptic boundary value problems. A degree for the whole class of quasilinear Fredholm mappings must necessarily accommodate sign-switching of the degree along admissible homotopies. The authors introduce ''parity'', a homotopy invariant of paths of linear Fredholm operators having invertible endpoints. The parity provides a complete description of the possible changes in sign of the degree and thereby permits use of the degree to prove multiplicity and bifurcation theorems for quasilinear Fredholm mappings. Applications are given to the study of fully nonlinear elliptic boundary value problems.

Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability

Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability PDF Author: G Dangelmayr
Publisher: CRC Press
ISBN: 9780582229297
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
The mathematical description of complex spatiotemporal behaviour observed in dissipative continuous systems is a major challenge for modern research in applied mathematics. While the behaviour of low-dimensional systems, governed by the dynamics of a finite number of modes is well understood, systems with large or unbounded spatial domains show intrinsic infinite-dimensional behaviour --not a priori accessible to the methods of finite dimensionaldynamical systems. The purpose of the four contributions in this book is to present some recent and active lines of research in evolution equations posed in large or unbounded domains. One of the most prominent features of these systems is the propagation of various types of patterns in the form of waves, such as travelling and standing waves and pulses and fronts. Different approaches to studying these kinds of phenomena are discussed in the book. A major theme is the reduction of an original evolution equation in the form of a partial differential equation system to a simpler system of equations, either a system of ordinary differential equation or a canonical system of PDEs. The study of the reduced equations provides insight into the bifurcations from simple to more complicated solutions and their stabilities. .

An Index of a Graph with Applications to Knot Theory

An Index of a Graph with Applications to Knot Theory PDF Author: Kunio Murasugi
Publisher: American Mathematical Soc.
ISBN: 0821825704
Category : Mathematics
Languages : en
Pages : 118

Get Book Here

Book Description
There are three chapters to the memoir. The first defines and develops the notion of the index of a graph. The next chapter presents the general application of the graph index to knot theory. The last section is devoted to particular examples, such as determining the braid index of alternating pretzel links. A second result shows that for an alternating knot with Alexander polynomial having leading coefficient less than 4 in absolute value, the braid index is determined by polynomial invariants.

Nonlinear Functional Analysis and its Applications

Nonlinear Functional Analysis and its Applications PDF Author: E. Zeidler
Publisher: Springer Science & Business Media
ISBN: 1461245664
Category : Mathematics
Languages : en
Pages : 1007

Get Book Here

Book Description
The fourth of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self-contained and accessible to the non-specialist, and topics covered include applications to mechanics, elasticity, plasticity, hydrodynamics, thermodynamics, statistical physics, and special and general relativity including cosmology. The book contains a detailed physical motivation of the relevant basic equations and a discussion of particular problems which have played a significant role in the development of physics and through which important mathematical and physical insight may be gained. It combines classical and modern ideas to build a bridge between the language and thoughts of physicists and mathematicians. Many exercises and a comprehensive bibliography complement the text.

Completely Prime Maximal Ideals and Quantization

Completely Prime Maximal Ideals and Quantization PDF Author: William M. McGovern
Publisher: American Mathematical Soc.
ISBN: 0821825801
Category : Mathematics
Languages : en
Pages : 82

Get Book Here

Book Description
Let [Fraktur lowercase]g be a complex simple Lie algebra of classical type, [italic capital]U([Fraktur lowercase]g) its enveloping algebra. We classify the completely prime maximal spectrum of [italic capital]U([Fraktur lowercase]g). We also construct some interesting algebra extensions of primitive quotients of [italic capital]U([Fraktur lowercase]g), and compute their Goldie ranks, lengths as bimodules, and characteristic cycles. Finally, we study the relevance of these algebras to D. Vogan's program of "quantizing" covers of nilpotent orbits [script]O in [Fraktur lowercase]g[superscript]*.

A Topological Chern-Weil Theory

A Topological Chern-Weil Theory PDF Author: Anthony Valiant Phillips
Publisher: American Mathematical Soc.
ISBN: 0821825666
Category : Mathematics
Languages : en
Pages : 90

Get Book Here

Book Description
We examine the general problem of computing characteristic invariants of principal bundles whose structural group [italic capital]G is a topological group. Under the hypothesis that [italic capital]G has real cohomology finitely generated as an [bold]R-module, we are able to give a completely topological, local method for computing representative cocycles for real characteristic classes; our method applies, for example, to the (homologically) 10-dimensional non-Lie group of Hilton-Roitberg-Stasheff.

Littlewood-Paley Theory on Spaces of Homogeneous Type and the Classical Function Spaces

Littlewood-Paley Theory on Spaces of Homogeneous Type and the Classical Function Spaces PDF Author: Yongsheng Han
Publisher: American Mathematical Soc.
ISBN: 0821825925
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
In this work, Han and Sawyer extend Littlewood-Paley theory, Besov spaces, and Triebel-Lizorkin spaces to the general setting of a space of homogeneous type. For this purpose, they establish a suitable analogue of the Calder 'on reproducing formula and use it to extend classical results on atomic decomposition, interpolation, and T1 and Tb theorems. Some new results in the classical setting are also obtained: atomic decompositions with vanishing b-moment, and Littlewood-Paley characterizations of Besov and Triebel-Lizorkin spaces with only half the usual smoothness and cancellation conditions on the approximate identity.