Author: Olivia Parr Rud
Publisher: John Wiley & Sons
ISBN: 0471437514
Category : Computers
Languages : en
Pages : 399
Book Description
Increase profits and reduce costs by utilizing this collection of models of the most commonly asked data mining questions In order to find new ways to improve customer sales and support, and as well as manage risk, business managers must be able to mine company databases. This book provides a step-by-step guide to creating and implementing models of the most commonly asked data mining questions. Readers will learn how to prepare data to mine, and develop accurate data mining questions. The author, who has over ten years of data mining experience, also provides actual tested models of specific data mining questions for marketing, sales, customer service and retention, and risk management. A CD-ROM, sold separately, provides these models for reader use.
Data Mining Cookbook
Author: Olivia Parr Rud
Publisher: John Wiley & Sons
ISBN: 0471437514
Category : Computers
Languages : en
Pages : 399
Book Description
Increase profits and reduce costs by utilizing this collection of models of the most commonly asked data mining questions In order to find new ways to improve customer sales and support, and as well as manage risk, business managers must be able to mine company databases. This book provides a step-by-step guide to creating and implementing models of the most commonly asked data mining questions. Readers will learn how to prepare data to mine, and develop accurate data mining questions. The author, who has over ten years of data mining experience, also provides actual tested models of specific data mining questions for marketing, sales, customer service and retention, and risk management. A CD-ROM, sold separately, provides these models for reader use.
Publisher: John Wiley & Sons
ISBN: 0471437514
Category : Computers
Languages : en
Pages : 399
Book Description
Increase profits and reduce costs by utilizing this collection of models of the most commonly asked data mining questions In order to find new ways to improve customer sales and support, and as well as manage risk, business managers must be able to mine company databases. This book provides a step-by-step guide to creating and implementing models of the most commonly asked data mining questions. Readers will learn how to prepare data to mine, and develop accurate data mining questions. The author, who has over ten years of data mining experience, also provides actual tested models of specific data mining questions for marketing, sales, customer service and retention, and risk management. A CD-ROM, sold separately, provides these models for reader use.
Exploratory Data Mining and Data Cleaning
Author: Tamraparni Dasu
Publisher: John Wiley & Sons
ISBN: 0471458643
Category : Mathematics
Languages : en
Pages : 226
Book Description
Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.
Publisher: John Wiley & Sons
ISBN: 0471458643
Category : Mathematics
Languages : en
Pages : 226
Book Description
Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.
Learning Data Mining with Python
Author: Robert Layton
Publisher: Packt Publishing Ltd
ISBN: 1784391204
Category : Computers
Languages : en
Pages : 344
Book Description
The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations.
Publisher: Packt Publishing Ltd
ISBN: 1784391204
Category : Computers
Languages : en
Pages : 344
Book Description
The next step in the information age is to gain insights from the deluge of data coming our way. Data mining provides a way of finding this insight, and Python is one of the most popular languages for data mining, providing both power and flexibility in analysis. This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. Next, we move on to more complex data types including text, images, and graphs. In every chapter, we create models that solve real-world problems. There is a rich and varied set of libraries available in Python for data mining. This book covers a large number, including the IPython Notebook, pandas, scikit-learn and NLTK. Each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will gain a large insight into using Python for data mining, with a good knowledge and understanding of the algorithms and implementations.
Handbook of Statistical Analysis and Data Mining Applications
Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824
Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824
Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Statistical Modeling and Analysis for Database Marketing
Author: Bruce Ratner
Publisher: CRC Press
ISBN: 0203496906
Category : Business & Economics
Languages : en
Pages : 383
Book Description
Traditional statistical methods are limited in their ability to meet the modern challenge of mining large amounts of data. Data miners, analysts, and statisticians are searching for innovative new data mining techniques with greater predictive power, an attribute critical for reliable models and analyses. Statistical Modeling and Analysis fo
Publisher: CRC Press
ISBN: 0203496906
Category : Business & Economics
Languages : en
Pages : 383
Book Description
Traditional statistical methods are limited in their ability to meet the modern challenge of mining large amounts of data. Data miners, analysts, and statisticians are searching for innovative new data mining techniques with greater predictive power, an attribute critical for reliable models and analyses. Statistical Modeling and Analysis fo
R and Data Mining
Author: Yanchang Zhao
Publisher: Academic Press
ISBN: 012397271X
Category : Mathematics
Languages : en
Pages : 251
Book Description
R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work
Publisher: Academic Press
ISBN: 012397271X
Category : Mathematics
Languages : en
Pages : 251
Book Description
R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work
Machine Learning for Data Mining
Author: Jesus Salcedo
Publisher: Packt Publishing Ltd
ISBN: 1838821554
Category : Computers
Languages : en
Pages : 247
Book Description
Get efficient in performing data mining and machine learning using IBM SPSS Modeler Key FeaturesLearn how to apply machine learning techniques in the field of data scienceUnderstand when to use different data mining techniques, how to set up different analyses, and how to interpret the resultsA step-by-step approach to improving model development and performanceBook Description Machine learning (ML) combined with data mining can give you amazing results in your data mining work by empowering you with several ways to look at data. This book will help you improve your data mining techniques by using smart modeling techniques. This book will teach you how to implement ML algorithms and techniques in your data mining work. It will enable you to pair the best algorithms with the right tools and processes. You will learn how to identify patterns and make predictions with minimal human intervention. You will build different types of ML models, such as the neural network, the Support Vector Machines (SVMs), and the Decision tree. You will see how all of these models works and what kind of data in the dataset they are suited for. You will learn how to combine the results of different models in order to improve accuracy. Topics such as removing noise and handling errors will give you an added edge in model building and optimization. By the end of this book, you will be able to build predictive models and extract information of interest from the dataset What you will learnHone your model-building skills and create the most accurate modelsUnderstand how predictive machine learning models workPrepare your data to acquire the best possible resultsCombine models in order to suit the requirements of different types of dataAnalyze single and multiple models and understand their combined resultsDerive worthwhile insights from your data using histograms and graphsWho this book is for If you are a data scientist, data analyst, and data mining professional and are keen to achieve a 30% higher salary by adding machine learning to your skillset, then this is the ideal book for you. You will learn to apply machine learning techniques to various data mining challenges. No prior knowledge of machine learning is assumed.
Publisher: Packt Publishing Ltd
ISBN: 1838821554
Category : Computers
Languages : en
Pages : 247
Book Description
Get efficient in performing data mining and machine learning using IBM SPSS Modeler Key FeaturesLearn how to apply machine learning techniques in the field of data scienceUnderstand when to use different data mining techniques, how to set up different analyses, and how to interpret the resultsA step-by-step approach to improving model development and performanceBook Description Machine learning (ML) combined with data mining can give you amazing results in your data mining work by empowering you with several ways to look at data. This book will help you improve your data mining techniques by using smart modeling techniques. This book will teach you how to implement ML algorithms and techniques in your data mining work. It will enable you to pair the best algorithms with the right tools and processes. You will learn how to identify patterns and make predictions with minimal human intervention. You will build different types of ML models, such as the neural network, the Support Vector Machines (SVMs), and the Decision tree. You will see how all of these models works and what kind of data in the dataset they are suited for. You will learn how to combine the results of different models in order to improve accuracy. Topics such as removing noise and handling errors will give you an added edge in model building and optimization. By the end of this book, you will be able to build predictive models and extract information of interest from the dataset What you will learnHone your model-building skills and create the most accurate modelsUnderstand how predictive machine learning models workPrepare your data to acquire the best possible resultsCombine models in order to suit the requirements of different types of dataAnalyze single and multiple models and understand their combined resultsDerive worthwhile insights from your data using histograms and graphsWho this book is for If you are a data scientist, data analyst, and data mining professional and are keen to achieve a 30% higher salary by adding machine learning to your skillset, then this is the ideal book for you. You will learn to apply machine learning techniques to various data mining challenges. No prior knowledge of machine learning is assumed.
Principles of Data Mining
Author: David J. Hand
Publisher: MIT Press
ISBN: 9780262082907
Category : Computers
Languages : en
Pages : 594
Book Description
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Publisher: MIT Press
ISBN: 9780262082907
Category : Computers
Languages : en
Pages : 594
Book Description
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Python Data Analysis Cookbook
Author: Ivan Idris
Publisher: Packt Publishing Ltd
ISBN: 1785283855
Category : Computers
Languages : en
Pages : 462
Book Description
Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in “cookbook” style striving for high realism in data analysis. Through the recipe-based format, you can read each recipe separately as required and immediately apply the knowledge gained.
Publisher: Packt Publishing Ltd
ISBN: 1785283855
Category : Computers
Languages : en
Pages : 462
Book Description
Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in “cookbook” style striving for high realism in data analysis. Through the recipe-based format, you can read each recipe separately as required and immediately apply the knowledge gained.
Data Preparation for Data Mining
Author: Dorian Pyle
Publisher: Morgan Kaufmann
ISBN: 9781558605299
Category : Computers
Languages : en
Pages : 566
Book Description
This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.
Publisher: Morgan Kaufmann
ISBN: 9781558605299
Category : Computers
Languages : en
Pages : 566
Book Description
This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.