Damage, Stiffness Loss, and Failure in Composite Structures

Damage, Stiffness Loss, and Failure in Composite Structures PDF Author: SN. Chatterjee
Publisher:
ISBN:
Category : Composite construction
Languages : en
Pages : 18

Get Book Here

Book Description
Laminated plate theory is widely used for elastic analysis and design of fiber composite structures. Use of the results for prediction of failure and for design of structures to avoid failure (with a margin of safety) is a more complex issue. Use of failure theories in terms of stresses or strains at a point can sometimes yield a very conservative estimate of the failure load. It is recognized that such theories, in conjunction with laminate analysis, yield an estimate of the point of damage onset (often in the matrix), but final failure usually requires progressive fiber breaks and significant load redistribution. Methods have been suggested to perform stress analyses beyond damage initiation, but they are very rarely used in practice (as compared to the use of plasticity theory for metal structures). Many progressive damage models make use of ad hoc assumptions for stiffness knockdowns. The objective of this paper is to demonstrate that damage mechanics (using a single or multiple damage parameters) can yield a set of constitutive laws, which are based on sound physical principles. It is shown that the dissipated energy density in a ply can be used as a damage parameter. Two structural problems are considered for demonstration. Results for the case of a pressure vessel are compared with those from netting analysis, a valid and widely accepted method for such designs. The second case is the problem of the "hole size effect," which is currently handled in practice by the use of semi-empirical methods and a series of tests.

Damage, Stiffness Loss, and Failure in Composite Structures

Damage, Stiffness Loss, and Failure in Composite Structures PDF Author: SN. Chatterjee
Publisher:
ISBN:
Category : Composite construction
Languages : en
Pages : 18

Get Book Here

Book Description
Laminated plate theory is widely used for elastic analysis and design of fiber composite structures. Use of the results for prediction of failure and for design of structures to avoid failure (with a margin of safety) is a more complex issue. Use of failure theories in terms of stresses or strains at a point can sometimes yield a very conservative estimate of the failure load. It is recognized that such theories, in conjunction with laminate analysis, yield an estimate of the point of damage onset (often in the matrix), but final failure usually requires progressive fiber breaks and significant load redistribution. Methods have been suggested to perform stress analyses beyond damage initiation, but they are very rarely used in practice (as compared to the use of plasticity theory for metal structures). Many progressive damage models make use of ad hoc assumptions for stiffness knockdowns. The objective of this paper is to demonstrate that damage mechanics (using a single or multiple damage parameters) can yield a set of constitutive laws, which are based on sound physical principles. It is shown that the dissipated energy density in a ply can be used as a damage parameter. Two structural problems are considered for demonstration. Results for the case of a pressure vessel are compared with those from netting analysis, a valid and widely accepted method for such designs. The second case is the problem of the "hole size effect," which is currently handled in practice by the use of semi-empirical methods and a series of tests.

Defects and Damage in Composite Materials and Structures

Defects and Damage in Composite Materials and Structures PDF Author: Rikard Benton Heslehurst
Publisher: CRC Press
ISBN: 146658047X
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
The advantages of composite materials include a high specific strength and stiffness, formability, and a comparative resistance to fatigue cracking and corrosion. However, not forsaking these advantages, composite materials are prone to a wide range of defects and damage that can significantly reduce the residual strength and stiffness of a structure or result in unfavorable load paths. Emphasizing defect identification and restitution, Defects and Damage in Composite Materials and Structures explains how defects and damage in composite materials and structures impact composite component performance. Providing ready access to an extensive, descriptive list of defects and damage types, this must-have reference: Examines defect criticality in composite structures Recommends repair actions to restore structural integrity Discusses failure modes and mechanisms of composites due to defects Reviews NDI processes for finding and identifying defects in composite materials Relating defect detection methods to defect type, the author merges his experience in the field of in-service activities for composite airframe maintenance and repair with indispensable reports and articles on defects and damage in advanced composite materials from the last 50 years.

Towards a Damage Tolerance Philosophy for Composite Materials and Structures

Towards a Damage Tolerance Philosophy for Composite Materials and Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 68

Get Book Here

Book Description


Composite Structures

Composite Structures PDF Author: Peter Grant
Publisher: ASTM International
ISBN: 0803128622
Category : Composite construction
Languages : en
Pages : 557

Get Book Here

Book Description
The objective of the May 1999 symposium from which these 29 papers were drawn was to bring together practitioners and theoreticians in the composite structural mechanics field to better understand the needs and limitations each group works with. Papers are organized under seven general headings: str

Fundamentals of Heat and Mass Transfer

Fundamentals of Heat and Mass Transfer PDF Author: Theodore L. Bergman
Publisher: John Wiley & Sons
ISBN: 1119722489
Category : Science
Languages : en
Pages : 994

Get Book Here

Book Description
With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective. Fundamentals of Heat and Mass Transfer 8th Edition has been the gold standard of heat transfer pedagogy for many decades, with a commitment to continuous improvement by four authors’ with more than 150 years of combined experience in heat transfer education, research and practice. Applying the rigorous and systematic problem-solving methodology that this text pioneered an abundance of examples and problems reveal the richness and beauty of the discipline. This edition makes heat and mass transfer more approachable by giving additional emphasis to fundamental concepts, while highlighting the relevance of two of today’s most critical issues: energy and the environment.

Modeling Damage, Fatigue and Failure of Composite Materials

Modeling Damage, Fatigue and Failure of Composite Materials PDF Author: Ramesh Talreja
Publisher: Elsevier
ISBN: 0443184887
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
Modeling Damage, Fatigue and Failure of Composite Materials, Second Edition provides the latest research in the field of composite materials, an area that has attracted a wealth of research, with significant interest in the areas of damage, fatigue, and failure. The book is fully updated, and is a comprehensive source of physics-based models for the analysis of progressive and critical failure phenomena in composite materials. It focuses on materials modeling while also reviewing treatments for analyzing failure in composite structures. Sections review damage development in composite materials such as generic damage and damage accumulation in textile composites and under multiaxial loading. Part Two focuses on the modeling of failure mechanisms in composite materials, with attention given to fiber/matrix cracking and debonding, compression failure, and delamination fracture. Final sections examine the modeling of damage and materials response in composite materials, including micro-level and multi-scale approaches, the failure analysis of composite materials and joints, and the applications of predictive failure models. - Provides a comprehensive source of physics-based models for the analysis of progressive and critical failure phenomena in composite materials - Assesses failure and life prediction in composite materials - Discusses the applications of predictive failure models such as computational approaches to failure analysis - Covers further developments in computational analyses and experimental techniques, along with new applications in aerospace, automotive, and energy (wind turbine blades) fields - Covers delamination and thermoplastic-based composites

Finite Element Modelling of Composite Materials and Structures

Finite Element Modelling of Composite Materials and Structures PDF Author: F L Matthews
Publisher: Elsevier
ISBN: 1855738929
Category : Technology & Engineering
Languages : en
Pages : 225

Get Book Here

Book Description
Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: - Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. - Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. - Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. - Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue.This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. - Covers important work on finite element analysis of composite material performance - Based on material developed for an MSc course at Imperial College, London, UK - Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis

Damage Modeling of Composite Structures

Damage Modeling of Composite Structures PDF Author: Pengfei Liu
Publisher: Elsevier
ISBN: 0323853536
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. - Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques - Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling - Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments - Demonstrates applications of damage models and numerical methods

Failure in Composites

Failure in Composites PDF Author: Anthony M. Waas
Publisher: DEStech Publications, Inc
ISBN: 1605950882
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
The fourth volume of the ASC series on advanced composites contains critical information on static and dynamic composite failure and how it is predicted and modeled using novel computational methods and micromechanical analysis.

Towards a Damage Tolerance Philosophy for Composite Materials and Structures

Towards a Damage Tolerance Philosophy for Composite Materials and Structures PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781730896545
Category : Science
Languages : en
Pages : 64

Get Book Here

Book Description
A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact. Obrien, T. Kevin Langley Research Center...