Science, Technology, Engineering, and Mathematics (Stem) Education

Science, Technology, Engineering, and Mathematics (Stem) Education PDF Author: Heather B. Gonzalez
Publisher: Createspace Independent Pub
ISBN: 9781479106103
Category : Education
Languages : en
Pages : 40

Get Book Here

Book Description
The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.

Science, Technology, Engineering, and Mathematics (Stem) Education

Science, Technology, Engineering, and Mathematics (Stem) Education PDF Author: Heather B. Gonzalez
Publisher: Createspace Independent Pub
ISBN: 9781479106103
Category : Education
Languages : en
Pages : 40

Get Book Here

Book Description
The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.

Science and Mathematics Education for 21st Century Citizens

Science and Mathematics Education for 21st Century Citizens PDF Author: Laurinda Leite
Publisher: Nova Science Publishers
ISBN: 9781536184853
Category : Education
Languages : en
Pages : 435

Get Book Here

Book Description
"This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--

Cracking the code

Cracking the code PDF Author: UNESCO
Publisher: UNESCO Publishing
ISBN: 9231002333
Category :
Languages : en
Pages : 82

Get Book Here

Book Description
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.

Contemporary Issues in Science, Technology and Mathematics Education (STME)

Contemporary Issues in Science, Technology and Mathematics Education (STME) PDF Author: College of Education, Gindiri (Nigeria). School of Sciences. National Conference
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description


Assessment in Mathematics Education

Assessment in Mathematics Education PDF Author: Christine Suurtamm
Publisher: Springer
ISBN: 3319323946
Category : Education
Languages : en
Pages : 46

Get Book Here

Book Description
This book provides an overview of current research on a variety of topics related to both large-scale and classroom assessment. First, the purposes, traditions and principles of assessment are considered, with particular attention to those common to all levels of assessment and those more connected with either classroom or large-scale assessment. Assessment design based on sound assessment principles is discussed, differentiating between large-scale and classroom assessment, but also examining how the design principles overlap. The focus then shifts to classroom assessment and provides specific examples of assessment strategies, before examining the impact of large-scale assessment on curriculum, policy, instruction, and classroom assessment. The book concludes by discussing the challenges that teachers currently face, as well as ways to support them. The book offers a common language for researchers in assessment, as well as a primer for those interested in understanding current work in the area of assessment. In summary, it provides the opportunity to discuss large-scale and classroom assessment by addressing the following main themes: ·Purposes, Traditions and Principles of Assessment ·Design of Assessment Tasks ·Classroom Assessment in Action ·Interactions of Large-Scale and Classroom Assessment ·Enhancing Sound Assessment Knowledge and Practices It also suggests areas for future research in assessment in mathematics education.

STEM Integration in K-12 Education

STEM Integration in K-12 Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309297990
Category : Education
Languages : en
Pages : 143

Get Book Here

Book Description
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.

The Case for STEM Education

The Case for STEM Education PDF Author: Rodger W. Bybee
Publisher: NSTA Press
ISBN: 1936959259
Category : Education
Languages : en
Pages : 130

Get Book Here

Book Description
"If you are interested in STEM education, policies, programs or practices, or you work on STEM in some capacity at any level, The case for STEM education will prove to be valuable reading. Author Rodger W. Bybee has written this book to inspire individuals in leadership roles to better understand and take action on STEM initiatives. The book's 10 chapters accomplish several tasks: Put STEM in context by outlining the challenges facing STEM education, drawing lessons from the Sputnik moment of the 1950s and 1960s, and contrasting contemporary STEM with other education reforms; Explore appropriate roles for the federal government, as well as states, districts, and individual schools; Offer several ideas and recommendations you can use to develop action plans for STEM. With an emphasis on both thinking and acting, The case for STEM education is a must-read for leaders at all levels: national and state policy makers, state-level educators responsible for STEM initiatives, college and university faculty who educate future STEM teachers, local administrators who make decisions about district and school programs, and teachers who represent STEM disciplines." - Back cover.

Engineering in K-12 Education

Engineering in K-12 Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030914471X
Category : Education
Languages : en
Pages : 595

Get Book Here

Book Description
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.

Successful K-12 STEM Education

Successful K-12 STEM Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309213002
Category : Education
Languages : en
Pages : 44

Get Book Here

Book Description
Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.

Contemporary Issues in Science and Technology Education

Contemporary Issues in Science and Technology Education PDF Author: Ben Akpan
Publisher: Springer Nature
ISBN: 3031242599
Category : Science
Languages : en
Pages : 307

Get Book Here

Book Description
This edited volume discusses major issues in present-day science and technology education (STE). It is divided into three thematic sections: philosophical foundations and curriculum development; sustainable development, technology and society; and the learning sciences and 21st century skills. Section I examines the history and future of STE curriculum development, along with specific issues within this dynamic area. Section II explores sustainable development in three important aspects: economic development, social development, and environmental protection. Section III covers the 21st century skills that are of overarching importance to the success of learners in school and the world of work. Anchoring each chapter is an assemblage of veteran science and technology education specialists selected from across the world. The book’s target is a worldwide audience of undergraduate / post-graduate students and their teachers, as well as researchers. This book’s exploration of the ever-increasing advances in STE and its narrative writing style will be of interest to a broad range of readers.