Author: Vladimir M. Agranovich
Publisher: Springer Science & Business Media
ISBN: 3662024063
Category : Science
Languages : en
Pages : 454
Book Description
Spatial dispersion, namely, the dependence of the dielectric-constant tensor on the wave vector (i.e., on the wavelength) at a fixed frequency, is receiving increased attention in electrodynamics and condensed-matter optics, partic ularly in crystal optics. In contrast to frequency dispersion, namely, the frequency dependence of the dielectric constant, spatial dispersion is of interest in optics mainly when it leads to qualitatively new phenomena. One such phenomenon has been weH known for many years; it is the natural optical activity (gyrotropy). But there are other interesting effects due to spatial dispersion, namely, new normal waves near absorption lines, optical anisotropy of cubic crystals, and many others. Crystal optics that takes spatial dispersion into account includes classical crystal optics with frequency dispersion only, as a special case. In our opinion, this fact alone justifies efforts to develop crystal optics with spatial dispersion taken into account, although admittedly its influence is smaH in some cases and it is observable only under rather special conditions. Furthermore, spatial dispersion in crystal optics deserves attention from another point as well, namely, the investigation of excitons that can be excited by light. We contend that crystal optics with spatial dispersion and the theory of excitons are fields that overlap to a great extent, and that it is sometimes quite impossible to separate them. It is our aim to show the true interplay be tween these interrelations and to combine the macroscopic and microscopic approaches to crystal optics with spatial dispersion and exciton theory.
Crystal Optics with Spatial Dispersion, and Excitons
Author: Vladimir M. Agranovich
Publisher: Springer Science & Business Media
ISBN: 3662024063
Category : Science
Languages : en
Pages : 454
Book Description
Spatial dispersion, namely, the dependence of the dielectric-constant tensor on the wave vector (i.e., on the wavelength) at a fixed frequency, is receiving increased attention in electrodynamics and condensed-matter optics, partic ularly in crystal optics. In contrast to frequency dispersion, namely, the frequency dependence of the dielectric constant, spatial dispersion is of interest in optics mainly when it leads to qualitatively new phenomena. One such phenomenon has been weH known for many years; it is the natural optical activity (gyrotropy). But there are other interesting effects due to spatial dispersion, namely, new normal waves near absorption lines, optical anisotropy of cubic crystals, and many others. Crystal optics that takes spatial dispersion into account includes classical crystal optics with frequency dispersion only, as a special case. In our opinion, this fact alone justifies efforts to develop crystal optics with spatial dispersion taken into account, although admittedly its influence is smaH in some cases and it is observable only under rather special conditions. Furthermore, spatial dispersion in crystal optics deserves attention from another point as well, namely, the investigation of excitons that can be excited by light. We contend that crystal optics with spatial dispersion and the theory of excitons are fields that overlap to a great extent, and that it is sometimes quite impossible to separate them. It is our aim to show the true interplay be tween these interrelations and to combine the macroscopic and microscopic approaches to crystal optics with spatial dispersion and exciton theory.
Publisher: Springer Science & Business Media
ISBN: 3662024063
Category : Science
Languages : en
Pages : 454
Book Description
Spatial dispersion, namely, the dependence of the dielectric-constant tensor on the wave vector (i.e., on the wavelength) at a fixed frequency, is receiving increased attention in electrodynamics and condensed-matter optics, partic ularly in crystal optics. In contrast to frequency dispersion, namely, the frequency dependence of the dielectric constant, spatial dispersion is of interest in optics mainly when it leads to qualitatively new phenomena. One such phenomenon has been weH known for many years; it is the natural optical activity (gyrotropy). But there are other interesting effects due to spatial dispersion, namely, new normal waves near absorption lines, optical anisotropy of cubic crystals, and many others. Crystal optics that takes spatial dispersion into account includes classical crystal optics with frequency dispersion only, as a special case. In our opinion, this fact alone justifies efforts to develop crystal optics with spatial dispersion taken into account, although admittedly its influence is smaH in some cases and it is observable only under rather special conditions. Furthermore, spatial dispersion in crystal optics deserves attention from another point as well, namely, the investigation of excitons that can be excited by light. We contend that crystal optics with spatial dispersion and the theory of excitons are fields that overlap to a great extent, and that it is sometimes quite impossible to separate them. It is our aim to show the true interplay be tween these interrelations and to combine the macroscopic and microscopic approaches to crystal optics with spatial dispersion and exciton theory.
Spatial Dispersion in Crystal Optics and the Theory of Excitons
Author: Vladimir Moiseevich Agranovich
Publisher:
ISBN:
Category : Crystal optics
Languages : en
Pages : 356
Book Description
Publisher:
ISBN:
Category : Crystal optics
Languages : en
Pages : 356
Book Description
Excitons and Cooper Pairs
Author: Monique Combescot
Publisher: Oxford University Press
ISBN: 019875373X
Category : Science
Languages : en
Pages : 559
Book Description
This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Using an original perspective that the key particles of these materials, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects their macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors begin with a solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange in the absence of fermion-fermion interaction - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or graduate students in physics with no specific background will benefit from this book. The developed concepts and formalism should also be useful for current research on ultracold atomic gases and exciton-polaritons, and quantum information.
Publisher: Oxford University Press
ISBN: 019875373X
Category : Science
Languages : en
Pages : 559
Book Description
This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Using an original perspective that the key particles of these materials, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects their macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors begin with a solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange in the absence of fermion-fermion interaction - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or graduate students in physics with no specific background will benefit from this book. The developed concepts and formalism should also be useful for current research on ultracold atomic gases and exciton-polaritons, and quantum information.
Progress in Optics
Author:
Publisher: Elsevier
ISBN: 008087973X
Category : Science
Languages : en
Pages : 439
Book Description
Progress in Optics
Publisher: Elsevier
ISBN: 008087973X
Category : Science
Languages : en
Pages : 439
Book Description
Progress in Optics
Physics of Negative Refraction and Negative Index Materials
Author: Clifford M. Krowne
Publisher: Springer Science & Business Media
ISBN: 3540721320
Category : Science
Languages : en
Pages : 380
Book Description
This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. It is perhaps the most comprehensive book on the new class of negative refraction materials, covering all aspects of negative refraction and negative index materials.
Publisher: Springer Science & Business Media
ISBN: 3540721320
Category : Science
Languages : en
Pages : 380
Book Description
This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. It is perhaps the most comprehensive book on the new class of negative refraction materials, covering all aspects of negative refraction and negative index materials.
Bose-Einstein Condensation of Excitons and Biexcitons
Author: Svi︠a︡toslav Anatolʹevich Moskalenko
Publisher: Cambridge University Press
ISBN: 9780521580991
Category : Science
Languages : en
Pages : 434
Book Description
Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. This is the first book to provide a comprehensive survey of this field, covering theoretical aspects as well as recent experimental work. After setting out the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behaviour of biexcitons. They cover exciton phase transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasi-equilibrium, and nonequilibrium systems are examined in detail. The authors interweave theoretical and experimental results throughout the book, and it will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.
Publisher: Cambridge University Press
ISBN: 9780521580991
Category : Science
Languages : en
Pages : 434
Book Description
Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. This is the first book to provide a comprehensive survey of this field, covering theoretical aspects as well as recent experimental work. After setting out the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behaviour of biexcitons. They cover exciton phase transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasi-equilibrium, and nonequilibrium systems are examined in detail. The authors interweave theoretical and experimental results throughout the book, and it will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.
Spectroscopy of Systems with Spatially Confined Structures
Author: Baldassare di Bartolo
Publisher: Springer Science & Business Media
ISBN: 9401002878
Category : Technology & Engineering
Languages : en
Pages : 758
Book Description
Nanometer scale physics is progressing rapidly: the top-down approach of semiconductor technology will soon encounter the scale of the bottom-up approaches of supramolecular chemistry and spatially localized excitations in ionic crystals. Advances in this area have already led to applications in optoelectronics. More may be expected. This book deals with the role of structure confinement in the spectroscopic characteristics of physical systems. It examines the fabrication, measurement and understanding of the relevant structures. It reports progress in the theory and in experimental techniques, starting with the consideration of fundamental principles and leading to the frontiers of research. The subjects dealt with include such spatially resolved structures as quantum wells, quantum wires, quantum dots, and luminescence, in both theoretical and practical terms.
Publisher: Springer Science & Business Media
ISBN: 9401002878
Category : Technology & Engineering
Languages : en
Pages : 758
Book Description
Nanometer scale physics is progressing rapidly: the top-down approach of semiconductor technology will soon encounter the scale of the bottom-up approaches of supramolecular chemistry and spatially localized excitations in ionic crystals. Advances in this area have already led to applications in optoelectronics. More may be expected. This book deals with the role of structure confinement in the spectroscopic characteristics of physical systems. It examines the fabrication, measurement and understanding of the relevant structures. It reports progress in the theory and in experimental techniques, starting with the consideration of fundamental principles and leading to the frontiers of research. The subjects dealt with include such spatially resolved structures as quantum wells, quantum wires, quantum dots, and luminescence, in both theoretical and practical terms.
Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures
Author: Jagdeep Shah
Publisher: Springer Science & Business Media
ISBN: 3662032996
Category : Science
Languages : en
Pages : 386
Book Description
Publisher: Springer Science & Business Media
ISBN: 3662032996
Category : Science
Languages : en
Pages : 386
Book Description
Inelastic Light Scattering in Crystals
Author: Mikhail Mikhaĭlovich Sushchinskiĭ
Publisher: Nova Publishers
ISBN: 9780941743266
Category : Science
Languages : en
Pages : 260
Book Description
Translation from the 1987 Russia edition. These proceedings address issues in solid state optics and physics: Raman scattering in crystals and dispersive media, Rayleigh and inelastic scattering with phase transitions, the features of ferroelectrics in connection with the general concept of soft mod
Publisher: Nova Publishers
ISBN: 9780941743266
Category : Science
Languages : en
Pages : 260
Book Description
Translation from the 1987 Russia edition. These proceedings address issues in solid state optics and physics: Raman scattering in crystals and dispersive media, Rayleigh and inelastic scattering with phase transitions, the features of ferroelectrics in connection with the general concept of soft mod
Optically Anomalous Crystals
Author: Alexander Shtukenberg
Publisher: Springer Science & Business Media
ISBN: 1402053533
Category : Science
Languages : en
Pages : 280
Book Description
This book begins with an historical introduction covering the contributions of many distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry, the piezo-optic effect and the kinetic ordering of atoms. The book treats the literature comprehensively, but uses illustrations from the authors’ laboratories as the subjects of detailed analyses.
Publisher: Springer Science & Business Media
ISBN: 1402053533
Category : Science
Languages : en
Pages : 280
Book Description
This book begins with an historical introduction covering the contributions of many distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry, the piezo-optic effect and the kinetic ordering of atoms. The book treats the literature comprehensively, but uses illustrations from the authors’ laboratories as the subjects of detailed analyses.