Author: Igor Shparlinski
Publisher: Birkhäuser
ISBN: 3034880375
Category : Mathematics
Languages : en
Pages : 402
Book Description
The book introduces new techniques that imply rigorous lower bounds on the com plexity of some number-theoretic and cryptographic problems. It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such as sieve methods and lattice reduction algorithms are used as well. The book also contains a number of open problems and proposals for further research. The emphasis is on obtaining unconditional rigorously proved statements. The bright side of this approach is that the results do not depend on any assumptions or conjectures. On the downside, the results are much weaker than those which are widely believed to be true. We obtain several lower bounds, exponential in terms of logp, on the degrees and orders of o polynomials; o algebraic functions; o Boolean functions; o linear recurrence sequences; coinciding with values of the discrete logarithm modulo a prime p at sufficiently many points (the number of points can be as small as pI/2+O:). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the rightmost bit of the discrete logarithm and defines whether the argument is a quadratic residue.
Cryptographic Applications of Analytic Number Theory
An Introduction to Number Theory with Cryptography
Author: James Kraft
Publisher: CRC Press
ISBN: 1351664107
Category : Computers
Languages : en
Pages : 409
Book Description
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
Publisher: CRC Press
ISBN: 1351664107
Category : Computers
Languages : en
Pages : 409
Book Description
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
Elliptic Curves
Author: Lawrence C. Washington
Publisher: CRC Press
ISBN: 1420071475
Category : Computers
Languages : en
Pages : 533
Book Description
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application
Publisher: CRC Press
ISBN: 1420071475
Category : Computers
Languages : en
Pages : 533
Book Description
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application
A Course in Number Theory and Cryptography
Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245
Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245
Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.
Advanced Number Theory with Applications
Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 1420083295
Category : Computers
Languages : en
Pages : 482
Book Description
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Publisher: CRC Press
ISBN: 1420083295
Category : Computers
Languages : en
Pages : 482
Book Description
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Mathematics of Public Key Cryptography
Author: Steven D. Galbraith
Publisher: Cambridge University Press
ISBN: 1107013925
Category : Computers
Languages : en
Pages : 631
Book Description
This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.
Publisher: Cambridge University Press
ISBN: 1107013925
Category : Computers
Languages : en
Pages : 631
Book Description
This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.
The Prime Number Theorem
Author: G. J. O. Jameson
Publisher: Cambridge University Press
ISBN: 9780521891103
Category : Mathematics
Languages : en
Pages : 266
Book Description
At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.
Publisher: Cambridge University Press
ISBN: 9780521891103
Category : Mathematics
Languages : en
Pages : 266
Book Description
At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.
Quantum Computational Number Theory
Author: Song Y. Yan
Publisher: Springer
ISBN: 3319258230
Category : Computers
Languages : en
Pages : 259
Book Description
This book provides a comprehensive introduction to advanced topics in the computational and algorithmic aspects of number theory, focusing on applications in cryptography. Readers will learn to develop fast algorithms, including quantum algorithms, to solve various classic and modern number theoretic problems. Key problems include prime number generation, primality testing, integer factorization, discrete logarithms, elliptic curve arithmetic, conjecture and numerical verification. The author discusses quantum algorithms for solving the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem (ECDLP) and for attacking IFP, DLP and ECDLP based cryptographic systems. Chapters also cover various other quantum algorithms for Pell's equation, principal ideal, unit group, class group, Gauss sums, prime counting function, Riemann's hypothesis and the BSD conjecture. Quantum Computational Number Theory is self-contained and intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the related fields. Number theorists, cryptographers and professionals working in quantum computing, cryptography and network security will find this book a valuable asset.
Publisher: Springer
ISBN: 3319258230
Category : Computers
Languages : en
Pages : 259
Book Description
This book provides a comprehensive introduction to advanced topics in the computational and algorithmic aspects of number theory, focusing on applications in cryptography. Readers will learn to develop fast algorithms, including quantum algorithms, to solve various classic and modern number theoretic problems. Key problems include prime number generation, primality testing, integer factorization, discrete logarithms, elliptic curve arithmetic, conjecture and numerical verification. The author discusses quantum algorithms for solving the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem (ECDLP) and for attacking IFP, DLP and ECDLP based cryptographic systems. Chapters also cover various other quantum algorithms for Pell's equation, principal ideal, unit group, class group, Gauss sums, prime counting function, Riemann's hypothesis and the BSD conjecture. Quantum Computational Number Theory is self-contained and intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the related fields. Number theorists, cryptographers and professionals working in quantum computing, cryptography and network security will find this book a valuable asset.
Coding, Cryptography and Combinatorics
Author: Keqin Feng
Publisher: Birkhäuser
ISBN: 3034878656
Category : Computers
Languages : en
Pages : 403
Book Description
It has long been recognized that there are fascinating connections between cod ing theory, cryptology, and combinatorics. Therefore it seemed desirable to us to organize a conference that brings together experts from these three areas for a fruitful exchange of ideas. We decided on a venue in the Huang Shan (Yellow Mountain) region, one of the most scenic areas of China, so as to provide the additional inducement of an attractive location. The conference was planned for June 2003 with the official title Workshop on Coding, Cryptography and Combi natorics (CCC 2003). Those who are familiar with events in East Asia in the first half of 2003 can guess what happened in the end, namely the conference had to be cancelled in the interest of the health of the participants. The SARS epidemic posed too serious a threat. At the time of the cancellation, the organization of the conference was at an advanced stage: all invited speakers had been selected and all abstracts of contributed talks had been screened by the program committee. Thus, it was de cided to call on all invited speakers and presenters of accepted contributed talks to submit their manuscripts for publication in the present volume. Altogether, 39 submissions were received and subjected to another round of refereeing. After care ful scrutiny, 28 papers were accepted for publication.
Publisher: Birkhäuser
ISBN: 3034878656
Category : Computers
Languages : en
Pages : 403
Book Description
It has long been recognized that there are fascinating connections between cod ing theory, cryptology, and combinatorics. Therefore it seemed desirable to us to organize a conference that brings together experts from these three areas for a fruitful exchange of ideas. We decided on a venue in the Huang Shan (Yellow Mountain) region, one of the most scenic areas of China, so as to provide the additional inducement of an attractive location. The conference was planned for June 2003 with the official title Workshop on Coding, Cryptography and Combi natorics (CCC 2003). Those who are familiar with events in East Asia in the first half of 2003 can guess what happened in the end, namely the conference had to be cancelled in the interest of the health of the participants. The SARS epidemic posed too serious a threat. At the time of the cancellation, the organization of the conference was at an advanced stage: all invited speakers had been selected and all abstracts of contributed talks had been screened by the program committee. Thus, it was de cided to call on all invited speakers and presenters of accepted contributed talks to submit their manuscripts for publication in the present volume. Altogether, 39 submissions were received and subjected to another round of refereeing. After care ful scrutiny, 28 papers were accepted for publication.
A Primer of Analytic Number Theory
Author: Jeffrey Stopple
Publisher: Cambridge University Press
ISBN: 9780521012539
Category : Mathematics
Languages : en
Pages : 404
Book Description
An undergraduate-level 2003 introduction whose only prerequisite is a standard calculus course.
Publisher: Cambridge University Press
ISBN: 9780521012539
Category : Mathematics
Languages : en
Pages : 404
Book Description
An undergraduate-level 2003 introduction whose only prerequisite is a standard calculus course.