Content-based Retrieval of Medical Images

Content-based Retrieval of Medical Images PDF Author: Paulo Mazzoncini de Azevedo-Marques
Publisher: Springer Nature
ISBN: 3031016513
Category : Technology & Engineering
Languages : en
Pages : 125

Get Book Here

Book Description
Content-based image retrieval (CBIR) is the process of retrieval of images from a database that are similar to a query image, using measures derived from the images themselves, rather than relying on accompanying text or annotation. To achieve CBIR, the contents of the images need to be characterized by quantitative features; the features of the query image are compared with the features of each image in the database and images having high similarity with respect to the query image are retrieved and displayed. CBIR of medical images is a useful tool and could provide radiologists with assistance in the form of a display of relevant past cases. One of the challenging aspects of CBIR is to extract features from the images to represent their visual, diagnostic, or application-specific information content. In this book, methods are presented for preprocessing, segmentation, landmarking, feature extraction, and indexing of mammograms for CBIR. The preprocessing steps include anisotropic diffusion and the Wiener filter to remove noise and perform image enhancement. Techniques are described for segmentation of the breast and fibroglandular disk, including maximum entropy, a moment-preserving method, and Otsu's method. Image processing techniques are described for automatic detection of the nipple and the edge of the pectoral muscle via analysis in the Radon domain. By using the nipple and the pectoral muscle as landmarks, mammograms are divided into their internal, external, upper, and lower parts for further analysis. Methods are presented for feature extraction using texture analysis, shape analysis, granulometric analysis, moments, and statistical measures. The CBIR system presented provides options for retrieval using the Kohonen self-organizing map and the k-nearest-neighbor method. Methods are described for inclusion of expert knowledge to reduce the semantic gap in CBIR, including the query point movement method for relevance feedback (RFb). Analysis of performance is described in terms of precision, recall, and relevance-weighted precision of retrieval. Results of application to a clinical database of mammograms are presented, including the input of expert radiologists into the CBIR and RFb processes. Models are presented for integration of CBIR and computer-aided diagnosis (CAD) with a picture archival and communication system (PACS) for efficient workflow in a hospital. Table of Contents: Introduction to Content-based Image Retrieval / Mammography and CAD of Breast Cancer / Segmentation and Landmarking of Mammograms / Feature Extraction and Indexing of Mammograms / Content-based Retrieval of Mammograms / Integration of CBIR and CAD into Radiological Workflow

Content-based Retrieval of Medical Images

Content-based Retrieval of Medical Images PDF Author: Paulo Mazzoncini de Azevedo-Marques
Publisher: Springer Nature
ISBN: 3031016513
Category : Technology & Engineering
Languages : en
Pages : 125

Get Book Here

Book Description
Content-based image retrieval (CBIR) is the process of retrieval of images from a database that are similar to a query image, using measures derived from the images themselves, rather than relying on accompanying text or annotation. To achieve CBIR, the contents of the images need to be characterized by quantitative features; the features of the query image are compared with the features of each image in the database and images having high similarity with respect to the query image are retrieved and displayed. CBIR of medical images is a useful tool and could provide radiologists with assistance in the form of a display of relevant past cases. One of the challenging aspects of CBIR is to extract features from the images to represent their visual, diagnostic, or application-specific information content. In this book, methods are presented for preprocessing, segmentation, landmarking, feature extraction, and indexing of mammograms for CBIR. The preprocessing steps include anisotropic diffusion and the Wiener filter to remove noise and perform image enhancement. Techniques are described for segmentation of the breast and fibroglandular disk, including maximum entropy, a moment-preserving method, and Otsu's method. Image processing techniques are described for automatic detection of the nipple and the edge of the pectoral muscle via analysis in the Radon domain. By using the nipple and the pectoral muscle as landmarks, mammograms are divided into their internal, external, upper, and lower parts for further analysis. Methods are presented for feature extraction using texture analysis, shape analysis, granulometric analysis, moments, and statistical measures. The CBIR system presented provides options for retrieval using the Kohonen self-organizing map and the k-nearest-neighbor method. Methods are described for inclusion of expert knowledge to reduce the semantic gap in CBIR, including the query point movement method for relevance feedback (RFb). Analysis of performance is described in terms of precision, recall, and relevance-weighted precision of retrieval. Results of application to a clinical database of mammograms are presented, including the input of expert radiologists into the CBIR and RFb processes. Models are presented for integration of CBIR and computer-aided diagnosis (CAD) with a picture archival and communication system (PACS) for efficient workflow in a hospital. Table of Contents: Introduction to Content-based Image Retrieval / Mammography and CAD of Breast Cancer / Segmentation and Landmarking of Mammograms / Feature Extraction and Indexing of Mammograms / Content-based Retrieval of Mammograms / Integration of CBIR and CAD into Radiological Workflow

AI Innovation in Medical Imaging Diagnostics

AI Innovation in Medical Imaging Diagnostics PDF Author: Anbarasan, Kalaivani
Publisher: IGI Global
ISBN: 1799830934
Category : Medical
Languages : en
Pages : 248

Get Book Here

Book Description
Recent advancements in the technology of medical imaging, such as CT and MRI scanners, are making it possible to create more detailed 3D and 4D images. These powerful images require vast amounts of digital data to help with the diagnosis of the patient. Artificial intelligence (AI) must play a vital role in supporting with the analysis of this medical imaging data, but it will only be viable as long as healthcare professionals and AI interact to embrace deep thinking platforms such as automation in the identification of diseases in patients. AI Innovation in Medical Imaging Diagnostics is an essential reference source that examines AI applications in medical imaging that can transform hospitals to become more efficient in the management of patient treatment plans through the production of faster imaging and the reduction of radiation dosages through the PET and SPECT imaging modalities. The book also explores how data clusters from these images can be translated into small data packages that can be accessed by healthcare departments to give a real-time insight into patient care and required interventions. Featuring research on topics such as assistive healthcare, cancer detection, and machine learning, this book is ideally designed for healthcare administrators, radiologists, data analysts, computer science professionals, medical imaging specialists, diagnosticians, medical professionals, researchers, and students.

Challenges and Applications for Implementing Machine Learning in Computer Vision

Challenges and Applications for Implementing Machine Learning in Computer Vision PDF Author: Kashyap, Ramgopal
Publisher: IGI Global
ISBN: 1799801845
Category : Computers
Languages : en
Pages : 318

Get Book Here

Book Description
Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 PDF Author: Anne L. Martel
Publisher: Springer Nature
ISBN: 3030597105
Category : Computers
Languages : en
Pages : 886

Get Book Here

Book Description
The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networks Part III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysis Part IV: segmentation; shape models and landmark detection Part V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmology Part VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imaging Part VI: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography

Medical Content-Based Retrieval for Clinical Decision Support

Medical Content-Based Retrieval for Clinical Decision Support PDF Author: Barbara Caputo
Publisher: Springer Science & Business Media
ISBN: 3642117686
Category : Business & Economics
Languages : en
Pages : 130

Get Book Here

Book Description
This book constitutes the refereed proceedings of the first MICCAI Workshop on Medical Content-Based Retrieval for Clinical Decision Support, MCBR_CBS 2009, held in London, UK, in September 2009. The 10 revised full papers were carefully reviewed and selected from numerous submissions. The papers are divide on several topics on medical image retrieval, clinical decision making and multimodal fusion.

Content-Based Image and Video Retrieval

Content-Based Image and Video Retrieval PDF Author: Oge Marques
Publisher: Springer Science & Business Media
ISBN: 1461509874
Category : Computers
Languages : en
Pages : 189

Get Book Here

Book Description
Content-Based Image And Video Retrieval addresses the basic concepts and techniques for designing content-based image and video retrieval systems. It also discusses a variety of design choices for the key components of these systems. This book gives a comprehensive survey of the content-based image retrieval systems, including several content-based video retrieval systems. The survey includes both research and commercial content-based retrieval systems. Content-Based Image And Video Retrieval includes pointers to two hundred representative bibliographic references on this field, ranging from survey papers to descriptions of recent work in the area, entire books and more than seventy websites. Finally, the book presents a detailed case study of designing MUSE–a content-based image retrieval system developed at Florida Atlantic University in Boca Raton, Florida.

Artificial Intelligence for Maximizing Content Based Image Retrieval

Artificial Intelligence for Maximizing Content Based Image Retrieval PDF Author: Ma, Zongmin
Publisher: IGI Global
ISBN: 1605661759
Category : Computers
Languages : en
Pages : 450

Get Book Here

Book Description
Discusses major aspects of content-based image retrieval (CBIR) using current technologies and applications within the artificial intelligence (AI) field.

Handbook of Medical Imaging

Handbook of Medical Imaging PDF Author:
Publisher: Academic Press
ISBN: 0080533108
Category : Science
Languages : en
Pages : 983

Get Book Here

Book Description
In recent years, the remarkable advances in medical imaging instruments have increased their use considerably for diagnostics as well as planning and follow-up of treatment. Emerging from the fields of radiology, medical physics and engineering, medical imaging no longer simply deals with the technology and interpretation of radiographic images. The limitless possibilities presented by computer science and technology, coupled with engineering advances in signal processing, optics and nuclear medicine have created the vastly expanded field of medical imaging. The Handbook of Medical Imaging is the first comprehensive compilation of the concepts and techniques used to analyze and manipulate medical images after they have been generated or digitized. The Handbook is organized in six sections that relate to the main functions needed for processing: enhancement, segmentation, quantification, registration, visualization as well as compression storage and telemedicine. * Internationally renowned authors(Johns Hopkins, Harvard, UCLA, Yale, Columbia, UCSF) * Includes imaging and visualization * Contains over 60 pages of stunning, four-color images

Integrated Region-Based Image Retrieval

Integrated Region-Based Image Retrieval PDF Author: James Z. Wang
Publisher: Springer Science & Business Media
ISBN: 9780792373506
Category : Computers
Languages : en
Pages : 198

Get Book Here

Book Description
The system is exceptionally robust to image alterations such as intensity variation, sharpness variation, intentional distortions, cropping, shifting, and rotation. These features are extremely important to biomedical image databases since visual features in the query image are not exactly the same as the visual features in the images in the database." "Integrated Region-Based Image Retrieval is an excellent reference for researchers in the fields of image retrieval, multimedia, computer vision and image processing."--BOOK JACKET.

Biomedical Image Processing

Biomedical Image Processing PDF Author: Thomas Martin Deserno
Publisher: Springer Science & Business Media
ISBN: 3642158161
Category : Science
Languages : en
Pages : 617

Get Book Here

Book Description
In modern medicine, imaging is the most effective tool for diagnostics, treatment planning and therapy. Almost all modalities have went to directly digital acquisition techniques and processing of this image data have become an important option for health care in future. This book is written by a team of internationally recognized experts from all over the world. It provides a brief but complete overview on medical image processing and analysis highlighting recent advances that have been made in academics. Color figures are used extensively to illustrate the methods and help the reader to understand the complex topics.