Medical Image Reconstruction

Medical Image Reconstruction PDF Author: Gengsheng Zeng
Publisher: Springer Science & Business Media
ISBN: 3642053688
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.

Medical Image Reconstruction

Medical Image Reconstruction PDF Author: Gengsheng Zeng
Publisher: Springer Science & Business Media
ISBN: 3642053688
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.

Cone Beam Tomographic Image Reconstruction

Cone Beam Tomographic Image Reconstruction PDF Author: Jicun Hu
Publisher:
ISBN:
Category : Diagnostic imaging
Languages : en
Pages : 322

Get Book Here

Book Description


Cone Beam Computed Tomography

Cone Beam Computed Tomography PDF Author: Chris C. Shaw
Publisher: Taylor & Francis
ISBN: 143984626X
Category : Medical
Languages : en
Pages : 272

Get Book Here

Book Description
Conventional computed tomography (CT) techniques employ a narrow array of x-ray detectors and a fan-shaped x-ray beam to rotate around the patient to produce images of thin sections of the patient. Large sections of the body are covered by moving the patient into the rotating x-ray detector and x-ray source gantry. Cone beam CT is an alternative technique using a large area detector and cone-shaped x-ray beam to produce 3D images of a thick section of the body with one full angle (360 degree or 180 degree plus detector coverage) rotation. It finds applications in situations where bulky, conventional CT systems would interfere with clinical procedures or cannot be integrated with the primary treatments or imaging systems. Cone Beam Computed Tomography explores the past, present, and future state of medical x-ray imaging while explaining how cone beam CT, with its superior spatial resolution and compact configuration, is used in clinical applications and animal research. The book: Supplies a detailed introduction to cone beam CT, covering basic principles and applications as well as advanced techniques Explores state-of-the-art research and future developments while examining the fundamental limitations of the technology Addresses issues related to implementation and system characteristics, including image quality, artifacts, radiation dose, and perception Reviews the historical development of medical x-ray imaging, from conventional CT techniques to volumetric 3D imaging Discusses the major components of cone beam CT: image acquisition, reconstruction, processing, and display A reference work for scientists, engineers, students, and imaging professionals, Cone Beam Computed Tomography provides a solid understanding of the theory and implementation of this revolutionary technology.

Practical Image Reconstruction for Cone Beam Computed Tomography

Practical Image Reconstruction for Cone Beam Computed Tomography PDF Author: Stefan Schaller
Publisher:
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description


Computed Tomography

Computed Tomography PDF Author: Thorsten M. Buzug
Publisher: Springer Science & Business Media
ISBN: 3540394087
Category : Medical
Languages : en
Pages : 522

Get Book Here

Book Description
This volume provides an overview of X-ray technology and the historical development of modern CT systems. The main focus of the book is a detailed derivation of reconstruction algorithms in 2D and modern 3D cone-beam systems. A thorough analysis of CT artifacts and a discussion of practical issues such as dose considerations give further insight into current CT systems. Although written mainly for graduate students, practitioners will also benefit from this book.

Interpretation Basics of Cone Beam Computed Tomography

Interpretation Basics of Cone Beam Computed Tomography PDF Author: Shawneen M. Gonzalez
Publisher: John Wiley & Sons
ISBN: 1119685842
Category : Medical
Languages : en
Pages : 258

Get Book Here

Book Description
Interpretation Basics of Cone Beam Computed Tomography, Second Edition is a practical identification guide for interpreting CBCT findings in dental practice. Offering multiple high-quality images for each example provided, this easy-to-use guide is designed for those new to CBCT scans as well as more experienced practitioners in need of a reference tool of normal anatomy, common anatomical variants, and incidental findings. Extensively revised throughout, the Second Edition features a brand-new chapter on findings of the maxilla and mandible, and additional incidental findings and common anatomical variants. Every chapter in the book now includes sections covering anatomic variations, developmental anomalies, pathosis, and other considerations. All information has been carefully reviewed and updated to incorporate recent research in the field and reflect newer guidelines from various specialty organizations. This new edition: Enables rapid reference to common CBCT findings, with multiple images for each finding Features a streamlined framework that makes relevant information easier to find and apply in dental practice Offers hundreds of new images to aid in correctly identifying findings Contains new and updated content, including expanded coverage of CBCT and implants Provides sample reports and explains how they are used in day-to-day clinical practice Interpretation Basics of Cone Beam Computed Tomography, Second Edition remains a must-have resource for all dental practitioner and specialists who use CBCT, dental students in radiology interpretation courses, and residents beginning to use CBCT in their specialty.

3D Image Reconstruction for CT and PET

3D Image Reconstruction for CT and PET PDF Author: Daniele Panetta
Publisher: CRC Press
ISBN: 100017588X
Category : Medical
Languages : en
Pages : 97

Get Book Here

Book Description
This is a practical guide to tomographic image reconstruction with projection data, with strong focus on Computed Tomography (CT) and Positron Emission Tomography (PET). Classic methods such as FBP, ART, SIRT, MLEM and OSEM are presented with modern and compact notation, with the main goal of guiding the reader from the comprehension of the mathematical background through a fast-route to real practice and computer implementation of the algorithms. Accompanied by example data sets, real ready-to-run Python toolsets and scripts and an overview the latest research in the field, this guide will be invaluable for graduate students and early-career researchers and scientists in medical physics and biomedical engineering who are beginners in the field of image reconstruction. A top-down guide from theory to practical implementation of PET and CT reconstruction methods, without sacrificing the rigor of mathematical background Accompanied by Python source code snippets, suggested exercises, and supplementary ready-to-run examples for readers to download from the CRC Press website Ideal for those willing to move their first steps on the real practice of image reconstruction, with modern scientific programming language and toolsets Daniele Panetta is a researcher at the Institute of Clinical Physiology of the Italian National Research Council (CNR-IFC) in Pisa. He earned his MSc degree in Physics in 2004 and specialisation diploma in Health Physics in 2008, both at the University of Pisa. From 2005 to 2007, he worked at the Department of Physics "E. Fermi" of the University of Pisa in the field of tomographic image reconstruction for small animal imaging micro-CT instrumentation. His current research at CNR-IFC has as its goal the identification of novel PET/CT imaging biomarkers for cardiovascular and metabolic diseases. In the field micro-CT imaging, his interests cover applications of three-dimensional morphometry of biosamples and scaffolds for regenerative medicine. He acts as reviewer for scientific journals in the field of Medical Imaging: Physics in Medicine and Biology, Medical Physics, Physica Medica, and others. Since 2012, he is adjunct professor in Medical Physics at the University of Pisa. Niccolò Camarlinghi is a researcher at the University of Pisa. He obtained his MSc in Physics in 2007 and his PhD in Applied Physics in 2012. He has been working in the field of Medical Physics since 2008 and his main research fields are medical image analysis and image reconstruction. He is involved in the development of clinical, pre-clinical PET and hadron therapy monitoring scanners. At the time of writing this book he was a lecturer at University of Pisa, teaching courses of life-sciences and medical physics laboratory. He regularly acts as a referee for the following journals: Medical Physics, Physics in Medicine and Biology, Transactions on Medical Imaging, Computers in Biology and Medicine, Physica Medica, EURASIP Journal on Image and Video Processing, Journal of Biomedical and Health Informatics.

Atlas of Cone Beam Computed Tomography

Atlas of Cone Beam Computed Tomography PDF Author: Yaser Safi
Publisher: John Wiley & Sons
ISBN: 1119667771
Category : Medical
Languages : en
Pages : 468

Get Book Here

Book Description
A comprehensive collection of oral and maxillofacial cases using cone beam CT imaging Atlas of Cone Beam Computed Tomography delivers a robust collection of cases using this advanced method of imaging for oral and maxillofacial radiology. The book features over 1,500 high-quality CBCT scans with succinct descriptions covering a wide range of maxillofacial region conditions, including normal anatomy, anomalies, inflammatory diseases, and degenerative diseases. Easy to navigate and featuring multiple images of normal variation and pathologies, the book offers readers guidance on the diagnostic values of CBCT, as well as CBCT images of the inferior alveolar nerve canal, dental implants, temporomandibular joint evaluations, and surgical interventions. The book also includes: A thorough introduction to cone beam computed tomography, including in vivo and in vitro preparation and evaluation, indications in dentistry, and indications in medicine Comprehensive explorations of cone beam computed tomography artefacts and anatomic landmarks Practical discussions of cone beam computed tomography of dental structure, including normal anatomy, anomalies, and the difficulties of eruption In-depth examinations of cone beam computed tomography of pathological growth and development, including maxillofacial congenital and developmental anomalies Perfect for graduate dental students and postgraduate dental students in oral and maxillofacial radiology, Atlas of Cone Beam Computed Tomography is also useful to general dentists, oral and maxillofacial radiologists, head and neck maxillofacial surgeons, head and neck radiologists, general radiologists, and ENT surgeons.

Image Reconstruction

Image Reconstruction PDF Author: Gengsheng Lawrence Zeng
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110500590
Category : Medical
Languages : en
Pages : 240

Get Book Here

Book Description
This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich’s cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author’s most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content: Chapter 1 Basic Principles of Tomography 1.1 Tomography 1.2 Projection 1.3 Image Reconstruction 1.4 Backprojection 1.5 Mathematical Expressions Problems References Chapter 2 Parallel-Beam Image Reconstruction 2.1 Fourier Transform 2.2 Central Slice Theorem 2.3 Reconstruction Algorithms 2.4 A Computer Simulation 2.5 ROI Reconstruction with Truncated Projections 2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering Algorithm Problems References Chapter 3 Fan-Beam Image Reconstruction 3.1 Fan-Beam Geometry and Point Spread Function 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 3.3 Short Scan 3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform) Problems References Chapter 4 Transmission and Emission Tomography 4.1 X-Ray Computed Tomography 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 4.3 Attenuation Correction for Emission Tomography 4.4 Mathematical Expressions Problems References Chapter 5 3D Image Reconstruction 5.1 Parallel Line-Integral Data 5.2 Parallel Plane-Integral Data 5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm) 5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich’s Algorithm) Problems References Chapter 6 Iterative Reconstruction 6.1 Solving a System of Linear Equations 6.2 Algebraic Reconstruction Technique 6.3 Gradient Descent Algorithms 6.4 Maximum-Likelihood Expectation-Maximization Algorithms 6.5 Ordered-Subset Expectation-Maximization Algorithm 6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods) 6.7 Noise Modeling as a Likelihood Function 6.8 Including Prior Knowledge 6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green’s One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs ) 6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization Problems References Chapter 7 MRI Reconstruction 7.1 The 'M' 7.2 The 'R' 7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information) 7.4 Mathematical Expressions Problems References Indexing

Maxillofacial Cone Beam Computed Tomography

Maxillofacial Cone Beam Computed Tomography PDF Author: William C. Scarfe
Publisher: Springer
ISBN: 3319620614
Category : Medical
Languages : en
Pages : 1241

Get Book Here

Book Description
The book provides a comprehensive description of the fundamental operational principles, technical details of acquiring and specific clinical applications of dental and maxillofacial cone beam computed tomography (CBCT). It covers all clinical considerations necessary for optimal performance in a dental setting. In addition overall and region specific correlative imaging anatomy of the maxillofacial region is described in detail with emphasis on relevant disease. Finally imaging interpretation of CBCT images is presented related to specific clinical applications. This book is the definitive resource for all who refer, perform, interpret or use dental and maxillofacial CBCT including dental clinicians and specialists, radiographers, ENT physicians, head and neck, and oral and maxillofacial radiologists.