Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883940991
Category : Technology & Engineering
Languages : en
Pages : 73
Book Description
For the ongoing condition assessment of concrete structures, it is necessary to identify the extent, nature, cause and prognosis of any deterioration using a range of tools and methods, including prediction models. Combined with the original design and construction details, this gives a vast amount of information over a long time period. A framework concept is therefore needed to process the entirety of the information in order to make sound investment decisions on future maintenance management. To provide such a framework, fib Bulletin 59 summarizes information published infib Bulletins 17, 22, 34 and 44 relevant to the control and assessment of reinforced concrete structures, and develops a practical concept of how, when and where to control the condition of an existing concrete structure in order to facilitate structural management. Thus it gives a basis for processing relevant information in order to make decisions on the appropriate course of action for condition control.
Condition Control and Assessment of Reinforced Concrete Structures Exposed to Corrosive Environments (carbonation/chlorides)
Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883940991
Category : Technology & Engineering
Languages : en
Pages : 73
Book Description
For the ongoing condition assessment of concrete structures, it is necessary to identify the extent, nature, cause and prognosis of any deterioration using a range of tools and methods, including prediction models. Combined with the original design and construction details, this gives a vast amount of information over a long time period. A framework concept is therefore needed to process the entirety of the information in order to make sound investment decisions on future maintenance management. To provide such a framework, fib Bulletin 59 summarizes information published infib Bulletins 17, 22, 34 and 44 relevant to the control and assessment of reinforced concrete structures, and develops a practical concept of how, when and where to control the condition of an existing concrete structure in order to facilitate structural management. Thus it gives a basis for processing relevant information in order to make decisions on the appropriate course of action for condition control.
Publisher: fib Fédération internationale du béton
ISBN: 2883940991
Category : Technology & Engineering
Languages : en
Pages : 73
Book Description
For the ongoing condition assessment of concrete structures, it is necessary to identify the extent, nature, cause and prognosis of any deterioration using a range of tools and methods, including prediction models. Combined with the original design and construction details, this gives a vast amount of information over a long time period. A framework concept is therefore needed to process the entirety of the information in order to make sound investment decisions on future maintenance management. To provide such a framework, fib Bulletin 59 summarizes information published infib Bulletins 17, 22, 34 and 44 relevant to the control and assessment of reinforced concrete structures, and develops a practical concept of how, when and where to control the condition of an existing concrete structure in order to facilitate structural management. Thus it gives a basis for processing relevant information in order to make decisions on the appropriate course of action for condition control.
Corrosion in Reinforced Concrete Structures
Author: H Böhni
Publisher: Elsevier
ISBN: 1845690435
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
Reinforced concrete has the potential to be very durable and capable of withstanding a variety of adverse environmental conditions. However, failures in the structures do still occur as a result of premature reinforcement corrosion. In this authoritative book the fundamental aspects of this complex process are analysed; focusing on corrosion of the reinforcing steel, and looking particularly, at new scientific and technological developments.Monitoring techniques, including the newly developed online-monitoring, are examined, as well as the numerical methods used to simulate corrosion and perform parameter studies. The influence of composition and microstructure of concrete on corrosion behaviour is explored. The second half of the book, which deals with corrosion prevention methods, starts with a discussion on stainless steels as reinforcement materials. There are comprehensive reviews of the use of surface treatments and coatings, of the application of corrosion inhibitors and of the application of electrochemical techniques. In each case the necessary scientific fundamentals are explained and practical instances of use are looked at. This is an invaluable guide for engineers, materials scientists and researchers in the field of structural concrete. - Fundamental aspects of corrosion in concrete are analysed in detail - Explores how to minimise the effects of corrosion in concrete - Invaluable guide for engineers, materials scientists and researchers in the field of structural concrete
Publisher: Elsevier
ISBN: 1845690435
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
Reinforced concrete has the potential to be very durable and capable of withstanding a variety of adverse environmental conditions. However, failures in the structures do still occur as a result of premature reinforcement corrosion. In this authoritative book the fundamental aspects of this complex process are analysed; focusing on corrosion of the reinforcing steel, and looking particularly, at new scientific and technological developments.Monitoring techniques, including the newly developed online-monitoring, are examined, as well as the numerical methods used to simulate corrosion and perform parameter studies. The influence of composition and microstructure of concrete on corrosion behaviour is explored. The second half of the book, which deals with corrosion prevention methods, starts with a discussion on stainless steels as reinforcement materials. There are comprehensive reviews of the use of surface treatments and coatings, of the application of corrosion inhibitors and of the application of electrochemical techniques. In each case the necessary scientific fundamentals are explained and practical instances of use are looked at. This is an invaluable guide for engineers, materials scientists and researchers in the field of structural concrete. - Fundamental aspects of corrosion in concrete are analysed in detail - Explores how to minimise the effects of corrosion in concrete - Invaluable guide for engineers, materials scientists and researchers in the field of structural concrete
Corrosion of Steel in Concrete
Author: Luca Bertolini
Publisher: John Wiley & Sons
ISBN: 3527651713
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.
Publisher: John Wiley & Sons
ISBN: 3527651713
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures
Author: George Deodatis
Publisher: CRC Press
ISBN: 1315884887
Category : Technology & Engineering
Languages : en
Pages : 5732
Book Description
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013). This set of a book of abstracts and searchable, full paper USBdevice is must-have literature for researchers and practitioners involved with safety, reliability, risk and life-cycle performance of structures and infrastructures.
Publisher: CRC Press
ISBN: 1315884887
Category : Technology & Engineering
Languages : en
Pages : 5732
Book Description
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013). This set of a book of abstracts and searchable, full paper USBdevice is must-have literature for researchers and practitioners involved with safety, reliability, risk and life-cycle performance of structures and infrastructures.
2018 fib Awards for Outstanding Concrete Structures
Author: FIB – International Federation for Structural Concrete
Publisher: FIB - International Federation for Structural Concrete
ISBN: 2883941270
Category : Technology & Engineering
Languages : en
Pages : 44
Book Description
The fib Awards for Outstanding Concrete Structures are attributed every four years at the fib Congress, with the goal of enhancing the international recognition of concrete structures that demonstrate the versatility of concrete as a structural medium. The award consists of a bronze plaque to be displayed on the structure, and certificates presented to the main parties responsible for the work. Applications are invited by the fib secretariat via the National Member Groups. Information on the competition is also made available on the fib’s website, and in the newsletter fib-news published in Structural Concrete. The submitted structures must have been completed during the four years prior to the year of the Congress at which the awards are attributed. The jury may accept an older structure, completed one or two years before, provided that it was not already submitted for the previous award attribution (Mumbai, 2014). The submitted structures must also have the support of an fib Head of Delegation or National Member Group Secretary in order to confirm the authenticity of the indicated authors. Entries consist of the completed entry form, three to five representative photos of the whole structure and/or any important details or plans, and short summary texts explaining: - the history of the project; - description of the structure; - particularities of its realisation (difficulties encountered, special solutions found, etc.). A jury designated by the Presidium selects the winners. The awards are attributed in two categories, Civil Engineering Structures (including bridges) and Buildings. Two or three ‘Winners’ and two to four ‘Special Mention’ recipients are selected in each category, depending on the number of entries received. The jury takes into account criteria such as: - design aspects, including aesthetics and design detailing; - construction practice and quality of work; - environmental aspects of the design and its construction; - durability and sustainability aspects; - significance of the contribution made by the entry to the development and improvement of concrete construction. The decisions of the jury are definitive and cannot be challenged. They are unveiled at a special ceremony during the fib Congress in Melbourne.
Publisher: FIB - International Federation for Structural Concrete
ISBN: 2883941270
Category : Technology & Engineering
Languages : en
Pages : 44
Book Description
The fib Awards for Outstanding Concrete Structures are attributed every four years at the fib Congress, with the goal of enhancing the international recognition of concrete structures that demonstrate the versatility of concrete as a structural medium. The award consists of a bronze plaque to be displayed on the structure, and certificates presented to the main parties responsible for the work. Applications are invited by the fib secretariat via the National Member Groups. Information on the competition is also made available on the fib’s website, and in the newsletter fib-news published in Structural Concrete. The submitted structures must have been completed during the four years prior to the year of the Congress at which the awards are attributed. The jury may accept an older structure, completed one or two years before, provided that it was not already submitted for the previous award attribution (Mumbai, 2014). The submitted structures must also have the support of an fib Head of Delegation or National Member Group Secretary in order to confirm the authenticity of the indicated authors. Entries consist of the completed entry form, three to five representative photos of the whole structure and/or any important details or plans, and short summary texts explaining: - the history of the project; - description of the structure; - particularities of its realisation (difficulties encountered, special solutions found, etc.). A jury designated by the Presidium selects the winners. The awards are attributed in two categories, Civil Engineering Structures (including bridges) and Buildings. Two or three ‘Winners’ and two to four ‘Special Mention’ recipients are selected in each category, depending on the number of entries received. The jury takes into account criteria such as: - design aspects, including aesthetics and design detailing; - construction practice and quality of work; - environmental aspects of the design and its construction; - durability and sustainability aspects; - significance of the contribution made by the entry to the development and improvement of concrete construction. The decisions of the jury are definitive and cannot be challenged. They are unveiled at a special ceremony during the fib Congress in Melbourne.
2022 fib Awards for Outstanding Concrete Structures
Author: FIB – International Federation for Structural Concrete
Publisher: FIB - International Federation for Structural Concrete
ISBN: 2883941599
Category : Technology & Engineering
Languages : en
Pages : 48
Book Description
The fib has two major missions now. One is to work toward the publication of the Model Code 2020, and the other is to respond to the global movement toward carbon neutrality. While the former is steadily progressing toward completion, the latter will require significant efforts for generations to come. As we all know, cement, the primary material for concrete, is a sector that accounts for 8.5% of the world’s CO2 emissions. And the structural concrete that fib handles consume 60% of that. In other words, we need to know the reality that our structural concrete is emitting 5% of the world’s CO2. From now on, fib members, suppliers, designers, builders, owner’s engineers, and academic researchers will be asked how to solve this difficult problem. In general, most of the CO2 emissions in the life cycle of structural concrete come from the production stage of materials and the use stage after construction, i.e. A1 to A3 and B1 to B5 processes as defined in EN15978. Cement and steel sectors, which are the main materials for structural concrete, are expected to take various measures to achieve zero carbon in their respective sectors by 2050. Until then, we must deal with the transition with our low carbon technologies. Regarding the production stage, the fib has recently launched TG4.8 “Low carbon concrete”. And the latest low carbon technologies will be discussed there. On the other hand, in the use stage, there is very little data on the relationship between durability and intervention and maintenance so far. The data accumulation here is the work of the fib, a group of various experts on structural concrete. Through-life management using highly durable structures and precise monitoring will enable to realize minimum maintenance in the use stage and to minimize CO2 emissions. Furthermore, it is also possible to contribute to the reduction of CO2 emissions in the further stage after the first cycle by responding to the circular economy, that is, deconstruction (C), reuse, and recycle (D). However, the technology in this field is still in its infancy, and further research and development is expected in the future. As described above, structural concrete can be carbon neutral in all aspects of its conception, and it can make a significant contribution when it is realized. The fib will have to address these issues in the future. Of course, it will not be easy, and it will take time. However, if we do not continue our efforts as the only international academic society on structural concrete in the world to achieve carbon neutrality, the significance of our very existence may be questioned. Long before Portland cement was invented, Roman concrete, made of volcanic ash and other materials, was the ultimate low-carbon material, and is still in use 2’000 years later because of its non-reinforced structure and lack of deterioration factors. Reinforced concrete, which made it possible to apply concrete to structures other than arches and domes, is only 150 years old. Prestressed concrete is even younger, with only 80 years of history. Now that we think about it, we realize that Roman concrete, which is non-reinforced low carbon concrete, is one of the examples of problem solving that we are trying to achieve. We have new materials, such as coated reinforcement, FRP, and fiber reinforced concrete, which can be used in any structural form. To overcome this challenge with all our wisdom would be to live up to the feat the Romans accomplished 2’000 years ago. Realizing highly durable and elegant structures with low-carbon concrete is the key to meet the demands of the world in the future. I hope you will enjoy reading this AOS brochure showing the Outstanding Concrete Structures Awards at the fib 2022 Congress in Oslo. And I also hope you will find some clues for the challenges we are facing.
Publisher: FIB - International Federation for Structural Concrete
ISBN: 2883941599
Category : Technology & Engineering
Languages : en
Pages : 48
Book Description
The fib has two major missions now. One is to work toward the publication of the Model Code 2020, and the other is to respond to the global movement toward carbon neutrality. While the former is steadily progressing toward completion, the latter will require significant efforts for generations to come. As we all know, cement, the primary material for concrete, is a sector that accounts for 8.5% of the world’s CO2 emissions. And the structural concrete that fib handles consume 60% of that. In other words, we need to know the reality that our structural concrete is emitting 5% of the world’s CO2. From now on, fib members, suppliers, designers, builders, owner’s engineers, and academic researchers will be asked how to solve this difficult problem. In general, most of the CO2 emissions in the life cycle of structural concrete come from the production stage of materials and the use stage after construction, i.e. A1 to A3 and B1 to B5 processes as defined in EN15978. Cement and steel sectors, which are the main materials for structural concrete, are expected to take various measures to achieve zero carbon in their respective sectors by 2050. Until then, we must deal with the transition with our low carbon technologies. Regarding the production stage, the fib has recently launched TG4.8 “Low carbon concrete”. And the latest low carbon technologies will be discussed there. On the other hand, in the use stage, there is very little data on the relationship between durability and intervention and maintenance so far. The data accumulation here is the work of the fib, a group of various experts on structural concrete. Through-life management using highly durable structures and precise monitoring will enable to realize minimum maintenance in the use stage and to minimize CO2 emissions. Furthermore, it is also possible to contribute to the reduction of CO2 emissions in the further stage after the first cycle by responding to the circular economy, that is, deconstruction (C), reuse, and recycle (D). However, the technology in this field is still in its infancy, and further research and development is expected in the future. As described above, structural concrete can be carbon neutral in all aspects of its conception, and it can make a significant contribution when it is realized. The fib will have to address these issues in the future. Of course, it will not be easy, and it will take time. However, if we do not continue our efforts as the only international academic society on structural concrete in the world to achieve carbon neutrality, the significance of our very existence may be questioned. Long before Portland cement was invented, Roman concrete, made of volcanic ash and other materials, was the ultimate low-carbon material, and is still in use 2’000 years later because of its non-reinforced structure and lack of deterioration factors. Reinforced concrete, which made it possible to apply concrete to structures other than arches and domes, is only 150 years old. Prestressed concrete is even younger, with only 80 years of history. Now that we think about it, we realize that Roman concrete, which is non-reinforced low carbon concrete, is one of the examples of problem solving that we are trying to achieve. We have new materials, such as coated reinforcement, FRP, and fiber reinforced concrete, which can be used in any structural form. To overcome this challenge with all our wisdom would be to live up to the feat the Romans accomplished 2’000 years ago. Realizing highly durable and elegant structures with low-carbon concrete is the key to meet the demands of the world in the future. I hope you will enjoy reading this AOS brochure showing the Outstanding Concrete Structures Awards at the fib 2022 Congress in Oslo. And I also hope you will find some clues for the challenges we are facing.
Structural Concrete Textbook, Volume 5
Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 2883941025
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
The third edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) tofib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.
Publisher: fib Fédération internationale du béton
ISBN: 2883941025
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
The third edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) tofib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.
Partial factor methods for existing concrete structures
Author: FIB - Féd. Int. du Béton
Publisher: FIB - Féd. Int. du Béton
ISBN: 2883941203
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
For a large part of the existing buildings and infrastructure the design life has been reached or will be reached in the near future. These structures might need to be reassessed in order to investigate whether the safety requirements are met. Current practice on the assessment of existing concrete structures however needs a thorough evaluation from a risk and reliability point of view, as they are mostly verified using simplified procedures based on the partial factor method commonly applied in design of new structures. Such assessments are often conservative and may lead to expensive upgrades. Although the last decades reliability-based assessment of existing concrete structures has gained wide attention in the research field, a consistent reliability-based assessment framework and a practically applicable codified approach which is compatible with the Eurocodes and accessible for common structural engineering problems in everyday practice is currently missing. Such an approach however allows for a more uniform, more objective and probably more widely applied assessment approach for existing concrete structures. Hence, in this bulletin two different partial factor formats are elaborated, i.e. the Design Value Method (DVM) and the Adjusted Partial Factor Method (APFM), enabling the incorporation of specific reliability related aspects for existing structures. The DVM proposes a fundamental basis for evaluating partial factors whereas the APFM provides adjustment factors to be applied on the partial factors for new structures in EN 1990. In this bulletin both methods are elaborated and evaluated and a basis is provided for decision making regarding the target safety level of existing structures.
Publisher: FIB - Féd. Int. du Béton
ISBN: 2883941203
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
For a large part of the existing buildings and infrastructure the design life has been reached or will be reached in the near future. These structures might need to be reassessed in order to investigate whether the safety requirements are met. Current practice on the assessment of existing concrete structures however needs a thorough evaluation from a risk and reliability point of view, as they are mostly verified using simplified procedures based on the partial factor method commonly applied in design of new structures. Such assessments are often conservative and may lead to expensive upgrades. Although the last decades reliability-based assessment of existing concrete structures has gained wide attention in the research field, a consistent reliability-based assessment framework and a practically applicable codified approach which is compatible with the Eurocodes and accessible for common structural engineering problems in everyday practice is currently missing. Such an approach however allows for a more uniform, more objective and probably more widely applied assessment approach for existing concrete structures. Hence, in this bulletin two different partial factor formats are elaborated, i.e. the Design Value Method (DVM) and the Adjusted Partial Factor Method (APFM), enabling the incorporation of specific reliability related aspects for existing structures. The DVM proposes a fundamental basis for evaluating partial factors whereas the APFM provides adjustment factors to be applied on the partial factors for new structures in EN 1990. In this bulletin both methods are elaborated and evaluated and a basis is provided for decision making regarding the target safety level of existing structures.
18th International Probabilistic Workshop
Author: José C. Matos
Publisher: Springer Nature
ISBN: 3030736164
Category : Technology & Engineering
Languages : en
Pages : 855
Book Description
This volume presents the proceedings of the 18th International Probabilistic Workshop (IPW), which was held in Guimarães, Portugal in May 2021. Probabilistic methods are currently of crucial importance for research and developments in the field of engineering, which face challenges presented by new materials and technologies and rapidly changing societal needs and values. Contemporary needs related to, for example, performance-based design, service-life design, life-cycle analysis, product optimization, assessment of existing structures and structural robustness give rise to new developments as well as accurate and practically applicable probabilistic and statistical engineering methods to support these developments. These proceedings are a valuable resource for anyone interested in contemporary developments in the field of probabilistic engineering applications.
Publisher: Springer Nature
ISBN: 3030736164
Category : Technology & Engineering
Languages : en
Pages : 855
Book Description
This volume presents the proceedings of the 18th International Probabilistic Workshop (IPW), which was held in Guimarães, Portugal in May 2021. Probabilistic methods are currently of crucial importance for research and developments in the field of engineering, which face challenges presented by new materials and technologies and rapidly changing societal needs and values. Contemporary needs related to, for example, performance-based design, service-life design, life-cycle analysis, product optimization, assessment of existing structures and structural robustness give rise to new developments as well as accurate and practically applicable probabilistic and statistical engineering methods to support these developments. These proceedings are a valuable resource for anyone interested in contemporary developments in the field of probabilistic engineering applications.
Integrated life cycle assessment of concrete structures
Author: fib Fédération Internationale du béton
Publisher: fib Fédération Internationale du béton
ISBN: 2883941114
Category : Technology & Engineering
Languages : en
Pages : 70
Book Description
Concrete is after water the second most used material. The production of concrete in the industrialized countries annually amounts to 1.5-3 tonne per capita and is still increasing. This has significant impact on the environment. Thus there is an urgent need for more effective use of concrete in structures and their assessment. The scope of activities of the fib Task Group 3.7 was to define the methodology for integrated life-cycle assessment of concrete structures considering main essential aspects of sustainability such as: environmental, economic and social aspects throughout the whole life of the concrete structure. The aim was to set up basic methodology to be helpful in development of design and assessment tools focused on sustainability of concrete structure within the whole life cycle. Integrated Life Cycle Assessment (ILCA) represents an advanced approach integrating different aspects of sustainability in one complex assessment procedure. The integrated approach is necessary to insure that the structure will serve during the whole expected service life with a maximum functional quality and safety, while environmental and economic loads will be kept at a low level. The effective application and quality of results are dependent on the availability of relevant input data obtained using a detailed inventory analysis, based on specific regional conditions. The evaluation of the real level of total quality of concrete structure should be based on a detailed ILCA analysis using regionally or locally relevant data sets.
Publisher: fib Fédération Internationale du béton
ISBN: 2883941114
Category : Technology & Engineering
Languages : en
Pages : 70
Book Description
Concrete is after water the second most used material. The production of concrete in the industrialized countries annually amounts to 1.5-3 tonne per capita and is still increasing. This has significant impact on the environment. Thus there is an urgent need for more effective use of concrete in structures and their assessment. The scope of activities of the fib Task Group 3.7 was to define the methodology for integrated life-cycle assessment of concrete structures considering main essential aspects of sustainability such as: environmental, economic and social aspects throughout the whole life of the concrete structure. The aim was to set up basic methodology to be helpful in development of design and assessment tools focused on sustainability of concrete structure within the whole life cycle. Integrated Life Cycle Assessment (ILCA) represents an advanced approach integrating different aspects of sustainability in one complex assessment procedure. The integrated approach is necessary to insure that the structure will serve during the whole expected service life with a maximum functional quality and safety, while environmental and economic loads will be kept at a low level. The effective application and quality of results are dependent on the availability of relevant input data obtained using a detailed inventory analysis, based on specific regional conditions. The evaluation of the real level of total quality of concrete structure should be based on a detailed ILCA analysis using regionally or locally relevant data sets.