Author: V. Scott Gordon
Publisher: Mercury Learning and Information
ISBN: 1683926706
Category : Computers
Languages : en
Pages : 641
Book Description
This new edition provides step-by-step instruction on modern 3D graphics shader programming in OpenGL with C++, along with its theoretical foundations. It is appropriate both for computer science graphics courses and for professionals interested in mastering 3D graphics skills. It has been designed in a 4-color, “teach-yourself” format with numerous examples that the reader can run just as presented. Every shader stage is explored, from the basics of modeling, textures, lighting, shadows, etc., through advanced techniques such as tessellation, normal mapping, noise maps, as well as new chapters on simulating water, stereoscopy, and ray tracing. FEATURES: Covers modern OpenGL 4.0+ shader programming in C++, with instructions for both PC/Windows and Macintosh Adds new chapters on simulating water, stereoscopy, and ray tracing Includes companion files with code, object models, figures, and more (also available for downloading by writing to the publisher) Illustrates every technique with running code examples. Everything needed to install the libraries, and complete source code for each example Includes step-by-step instruction for using each GLSL programmable pipeline stage (vertex, tessellation, geometry, and fragment) Explores practical examples for modeling, lighting, and shadows (including soft shadows), terrain, water, and 3D materials such as wood and marble Explains how to optimize code for tools such as Nvidia’s Nsight debugger. The companion files and instructor resources are available online by emailing the publisher with proof of purchase at [email protected].
Computer Graphics Programming in OpenGL with C++
Author: V. Scott Gordon
Publisher: Mercury Learning and Information
ISBN: 1683926706
Category : Computers
Languages : en
Pages : 641
Book Description
This new edition provides step-by-step instruction on modern 3D graphics shader programming in OpenGL with C++, along with its theoretical foundations. It is appropriate both for computer science graphics courses and for professionals interested in mastering 3D graphics skills. It has been designed in a 4-color, “teach-yourself” format with numerous examples that the reader can run just as presented. Every shader stage is explored, from the basics of modeling, textures, lighting, shadows, etc., through advanced techniques such as tessellation, normal mapping, noise maps, as well as new chapters on simulating water, stereoscopy, and ray tracing. FEATURES: Covers modern OpenGL 4.0+ shader programming in C++, with instructions for both PC/Windows and Macintosh Adds new chapters on simulating water, stereoscopy, and ray tracing Includes companion files with code, object models, figures, and more (also available for downloading by writing to the publisher) Illustrates every technique with running code examples. Everything needed to install the libraries, and complete source code for each example Includes step-by-step instruction for using each GLSL programmable pipeline stage (vertex, tessellation, geometry, and fragment) Explores practical examples for modeling, lighting, and shadows (including soft shadows), terrain, water, and 3D materials such as wood and marble Explains how to optimize code for tools such as Nvidia’s Nsight debugger. The companion files and instructor resources are available online by emailing the publisher with proof of purchase at [email protected].
Publisher: Mercury Learning and Information
ISBN: 1683926706
Category : Computers
Languages : en
Pages : 641
Book Description
This new edition provides step-by-step instruction on modern 3D graphics shader programming in OpenGL with C++, along with its theoretical foundations. It is appropriate both for computer science graphics courses and for professionals interested in mastering 3D graphics skills. It has been designed in a 4-color, “teach-yourself” format with numerous examples that the reader can run just as presented. Every shader stage is explored, from the basics of modeling, textures, lighting, shadows, etc., through advanced techniques such as tessellation, normal mapping, noise maps, as well as new chapters on simulating water, stereoscopy, and ray tracing. FEATURES: Covers modern OpenGL 4.0+ shader programming in C++, with instructions for both PC/Windows and Macintosh Adds new chapters on simulating water, stereoscopy, and ray tracing Includes companion files with code, object models, figures, and more (also available for downloading by writing to the publisher) Illustrates every technique with running code examples. Everything needed to install the libraries, and complete source code for each example Includes step-by-step instruction for using each GLSL programmable pipeline stage (vertex, tessellation, geometry, and fragment) Explores practical examples for modeling, lighting, and shadows (including soft shadows), terrain, water, and 3D materials such as wood and marble Explains how to optimize code for tools such as Nvidia’s Nsight debugger. The companion files and instructor resources are available online by emailing the publisher with proof of purchase at [email protected].
Computer Graphics Programming in OpenGL with Java
Author: V. Scott Gordon
Publisher: Mercury Learning and Information
ISBN: 1683927346
Category : Computers
Languages : en
Pages : 626
Book Description
This new edition provides both step-by-step instruction on modern 3D graphics shader programming in OpenGL with Java in addition to reviewing its theoretical foundations. It is appropriate both for computer science graphics courses and for professionals interested in mastering 3D graphics skills. It has been designed in a 4-color, “teach-yourself” format with numerous examples that the reader can run just as presented. Every shader stage is explored, from the basics of modeling, textures, lighting, shadows, etc., through advanced techniques such as tessellation, normal mapping, noise maps, as well as new chapters on simulating water, stereoscopy, and ray tracing. FEATURES Covers modern OpenGL 4.0+ shader programming in Java, with instructions for both PC/Windows and Macintosh Illustrates every technique with running code examples. Everything needed to install the libraries, and complete source code for each example Includes step-by-step instruction for using each GLSL programmable pipeline stage (vertex, tessellation, geometry, and fragment) Explores practical examples for modeling, lighting and shadows (including soft shadows), terrain, water, and 3D materials such as wood and marble Adds new chapters on simulating water, stereoscopy, and ray tracing with compute shaders Explains how to optimize code with tools such as Nvidia’s Nsight debugger Includes companion files with code, object models, figures, and more. The companion files and instructor resources are available online by emailing the publisher with proof of purchase at [email protected].
Publisher: Mercury Learning and Information
ISBN: 1683927346
Category : Computers
Languages : en
Pages : 626
Book Description
This new edition provides both step-by-step instruction on modern 3D graphics shader programming in OpenGL with Java in addition to reviewing its theoretical foundations. It is appropriate both for computer science graphics courses and for professionals interested in mastering 3D graphics skills. It has been designed in a 4-color, “teach-yourself” format with numerous examples that the reader can run just as presented. Every shader stage is explored, from the basics of modeling, textures, lighting, shadows, etc., through advanced techniques such as tessellation, normal mapping, noise maps, as well as new chapters on simulating water, stereoscopy, and ray tracing. FEATURES Covers modern OpenGL 4.0+ shader programming in Java, with instructions for both PC/Windows and Macintosh Illustrates every technique with running code examples. Everything needed to install the libraries, and complete source code for each example Includes step-by-step instruction for using each GLSL programmable pipeline stage (vertex, tessellation, geometry, and fragment) Explores practical examples for modeling, lighting and shadows (including soft shadows), terrain, water, and 3D materials such as wood and marble Adds new chapters on simulating water, stereoscopy, and ray tracing with compute shaders Explains how to optimize code with tools such as Nvidia’s Nsight debugger Includes companion files with code, object models, figures, and more. The companion files and instructor resources are available online by emailing the publisher with proof of purchase at [email protected].
Advanced Graphics Programming Using OpenGL
Author: Tom McReynolds
Publisher: Elsevier
ISBN: 0080475728
Category : Computers
Languages : en
Pages : 673
Book Description
Today truly useful and interactive graphics are available on affordable computers. While hardware progress has been impressive, widespread gains in software expertise have come more slowly. Information about advanced techniques—beyond those learned in introductory computer graphics texts—is not as easy to come by as inexpensive hardware. This book brings the graphics programmer beyond the basics and introduces them to advanced knowledge that is hard to obtain outside of an intensive CG work environment. The book is about graphics techniques—those that don't require esoteric hardware or custom graphics libraries—that are written in a comprehensive style and do useful things. It covers graphics that are not covered well in your old graphics textbook. But it also goes further, teaching you how to apply those techniques in real world applications, filling real world needs. - Emphasizes the algorithmic side of computer graphics, with a practical application focus, and provides usable techniques for real world problems. - Serves as an introduction to the techniques that are hard to obtain outside of an intensive computer graphics work environment. - Sophisticated and novel programming techniques are implemented in C using the OpenGL library, including coverage of color and lighting; texture mapping; blending and compositing; antialiasing; image processing; special effects; natural phenomena; artistic and non-photorealistic techniques, and many others.
Publisher: Elsevier
ISBN: 0080475728
Category : Computers
Languages : en
Pages : 673
Book Description
Today truly useful and interactive graphics are available on affordable computers. While hardware progress has been impressive, widespread gains in software expertise have come more slowly. Information about advanced techniques—beyond those learned in introductory computer graphics texts—is not as easy to come by as inexpensive hardware. This book brings the graphics programmer beyond the basics and introduces them to advanced knowledge that is hard to obtain outside of an intensive CG work environment. The book is about graphics techniques—those that don't require esoteric hardware or custom graphics libraries—that are written in a comprehensive style and do useful things. It covers graphics that are not covered well in your old graphics textbook. But it also goes further, teaching you how to apply those techniques in real world applications, filling real world needs. - Emphasizes the algorithmic side of computer graphics, with a practical application focus, and provides usable techniques for real world problems. - Serves as an introduction to the techniques that are hard to obtain outside of an intensive computer graphics work environment. - Sophisticated and novel programming techniques are implemented in C using the OpenGL library, including coverage of color and lighting; texture mapping; blending and compositing; antialiasing; image processing; special effects; natural phenomena; artistic and non-photorealistic techniques, and many others.
Computer Graphics from Scratch
Author: Gabriel Gambetta
Publisher: No Starch Press
ISBN: 1718500769
Category : Computers
Languages : en
Pages : 250
Book Description
Computer Graphics from Scratch demystifies the algorithms used in modern graphics software and guides beginners through building photorealistic 3D renders. Computer graphics programming books are often math-heavy and intimidating for newcomers. Not this one. Computer Graphics from Scratch takes a simpler approach by keeping the math to a minimum and focusing on only one aspect of computer graphics, 3D rendering. You’ll build two complete, fully functional renderers: a raytracer, which simulates rays of light as they bounce off objects, and a rasterizer, which converts 3D models into 2D pixels. As you progress you’ll learn how to create realistic reflections and shadows, and how to render a scene from any point of view. Pseudocode examples throughout make it easy to write your renderers in any language, and links to live JavaScript demos of each algorithm invite you to explore further on your own. Learn how to: Use perspective projection to draw 3D objects on a 2D plane Simulate the way rays of light interact with surfaces Add mirror-like reflections and cast shadows to objects Render a scene from any camera position using clipping planes Use flat, Gouraud, and Phong shading to mimic real surface lighting Paint texture details onto basic shapes to create realistic-looking objects Whether you’re an aspiring graphics engineer or a novice programmer curious about how graphics algorithms work, Gabriel Gambetta’s simple, clear explanations will quickly put computer graphics concepts and rendering techniques within your reach. All you need is basic coding knowledge and high school math. Computer Graphics from Scratch will cover the rest.
Publisher: No Starch Press
ISBN: 1718500769
Category : Computers
Languages : en
Pages : 250
Book Description
Computer Graphics from Scratch demystifies the algorithms used in modern graphics software and guides beginners through building photorealistic 3D renders. Computer graphics programming books are often math-heavy and intimidating for newcomers. Not this one. Computer Graphics from Scratch takes a simpler approach by keeping the math to a minimum and focusing on only one aspect of computer graphics, 3D rendering. You’ll build two complete, fully functional renderers: a raytracer, which simulates rays of light as they bounce off objects, and a rasterizer, which converts 3D models into 2D pixels. As you progress you’ll learn how to create realistic reflections and shadows, and how to render a scene from any point of view. Pseudocode examples throughout make it easy to write your renderers in any language, and links to live JavaScript demos of each algorithm invite you to explore further on your own. Learn how to: Use perspective projection to draw 3D objects on a 2D plane Simulate the way rays of light interact with surfaces Add mirror-like reflections and cast shadows to objects Render a scene from any camera position using clipping planes Use flat, Gouraud, and Phong shading to mimic real surface lighting Paint texture details onto basic shapes to create realistic-looking objects Whether you’re an aspiring graphics engineer or a novice programmer curious about how graphics algorithms work, Gabriel Gambetta’s simple, clear explanations will quickly put computer graphics concepts and rendering techniques within your reach. All you need is basic coding knowledge and high school math. Computer Graphics from Scratch will cover the rest.
Graphics Programming in C
Author: Roger T. Stevens
Publisher:
ISBN: 9780133671605
Category : C (Computer program language)
Languages : en
Pages : 639
Book Description
Publisher:
ISBN: 9780133671605
Category : C (Computer program language)
Languages : en
Pages : 639
Book Description
Computer Graphics Through OpenGL®
Author: Sumanta Guha
Publisher: CRC Press
ISBN: 0429874847
Category : Computers
Languages : en
Pages : 732
Book Description
COMPREHENSIVE COVERAGE OF SHADERS AND THE PROGRAMMABLE PIPELINE From geometric primitives to animation to 3D modeling to lighting, shading and texturing, Computer Graphics Through OpenGL®: From Theory to Experiments is a comprehensive introduction to computer graphics which uses an active learning style to teach key concepts. Equally emphasizing theory and practice, the book provides an understanding not only of the principles of 3D computer graphics, but also the use of the OpenGL® Application Programming Interface (API) to code 3D scenes and animation, including games and movies. The undergraduate core of the book takes the student from zero knowledge of computer graphics to a mastery of the fundamental concepts with the ability to code applications using fourth-generation OpenGL®. The remaining chapters explore more advanced topics, including the structure of curves and surfaces, applications of projective spaces and transformations and the implementation of graphics pipelines. This book can be used for introductory undergraduate computer graphics courses over one to two semesters. The careful exposition style attempting to explain each concept in the simplest terms possible should appeal to the self-study student as well. Features • Covers the foundations of 3D computer graphics, including animation, visual techniques and 3D modeling • Comprehensive coverage of OpenGL® 4.x, including the GLSL and vertex, fragment, tessellation and geometry shaders • Includes 180 programs with 270 experiments based on them • Contains 750 exercises, 110 worked examples, and 700 four-color illustrations • Requires no previous knowledge of computer graphics • Balances theory with programming practice using a hands-on interactive approach to explain the underlying concepts
Publisher: CRC Press
ISBN: 0429874847
Category : Computers
Languages : en
Pages : 732
Book Description
COMPREHENSIVE COVERAGE OF SHADERS AND THE PROGRAMMABLE PIPELINE From geometric primitives to animation to 3D modeling to lighting, shading and texturing, Computer Graphics Through OpenGL®: From Theory to Experiments is a comprehensive introduction to computer graphics which uses an active learning style to teach key concepts. Equally emphasizing theory and practice, the book provides an understanding not only of the principles of 3D computer graphics, but also the use of the OpenGL® Application Programming Interface (API) to code 3D scenes and animation, including games and movies. The undergraduate core of the book takes the student from zero knowledge of computer graphics to a mastery of the fundamental concepts with the ability to code applications using fourth-generation OpenGL®. The remaining chapters explore more advanced topics, including the structure of curves and surfaces, applications of projective spaces and transformations and the implementation of graphics pipelines. This book can be used for introductory undergraduate computer graphics courses over one to two semesters. The careful exposition style attempting to explain each concept in the simplest terms possible should appeal to the self-study student as well. Features • Covers the foundations of 3D computer graphics, including animation, visual techniques and 3D modeling • Comprehensive coverage of OpenGL® 4.x, including the GLSL and vertex, fragment, tessellation and geometry shaders • Includes 180 programs with 270 experiments based on them • Contains 750 exercises, 110 worked examples, and 700 four-color illustrations • Requires no previous knowledge of computer graphics • Balances theory with programming practice using a hands-on interactive approach to explain the underlying concepts
Learning Vulkan
Author: Parminder Singh
Publisher: Packt Publishing Ltd
ISBN: 178646084X
Category : Computers
Languages : en
Pages : 457
Book Description
Discover how to build impressive 3D graphics with the next-generation graphics API—Vulkan About This Book Get started with the Vulkan API and its programming techniques using the easy-to-follow examples to create stunning 3D graphics Understand memory management in Vulkan and implement image and buffer resources Get hands-on with the drawing process and synchronization, and render a 3D graphics scene with the Vulkan graphics pipeline Who This Book Is For This book is ideal for graphic programmers who want to get up and running with Vulkan. It's also great for programmers who have experience with OpenGL and other graphic APIs who want to take advantage of next generation APIs. A good knowledge of C/C++ is expected. What You Will Learn Learn fundamentals of Vulkan programing model to harness the power of modern GPU devices. Implement device, command buffer and queues to get connected with the physical hardware. Explore various validation layers and learn how to use it for debugging Vulkan application. Get a grip on memory management to control host and device memory operations. Understand and implement buffer and image resource types in Vulkan. Define drawing operations in the Render pass and implement graphics pipeline. Manage GLSL shader using SPIR-V and update the shader resources with descriptor sets and push constants. Learn the drawing process, manage resources with synchronization objects and render 3D scene output on screen with Swapchain. Bring realism to your rendered 3D scene with textures, and implement linear and optimal textures In Detail Vulkan, the next generation graphics and compute API, is the latest offering by Khronos. This API is the successor of OpenGL and unlike OpenGL, it offers great flexibility and high performance capabilities to control modern GPU devices. With this book, you'll get great insights into the workings of Vulkan and how you can make stunning graphics run with minimum hardware requirements. We begin with a brief introduction to the Vulkan system and show you its distinct features with the successor to the OpenGL API. First, you will see how to establish a connection with hardware devices to query the available queues, memory types, and capabilities offered. Vulkan is verbose, so before diving deep into programing, you'll get to grips with debugging techniques so even first-timers can overcome error traps using Vulkan's layer and extension features. You'll get a grip on command buffers and acquire the knowledge to record various operation commands into command buffer and submit it to a proper queue for GPU processing. We'll take a detailed look at memory management and demonstrate the use of buffer and image resources to create drawing textures and image views for the presentation engine and vertex buffers to store geometry information. You'll get a brief overview of SPIR-V, the new way to manage shaders, and you'll define the drawing operations as a single unit of work in the Render pass with the help of attachments and subpasses. You'll also create frame buffers and build a solid graphics pipeline, as well as making use of the synchronizing mechanism to manage GPU and CPU hand-shaking. By the end, you'll know everything you need to know to get your hands dirty with the coolest Graphics API on the block. Style and approach This book takes a practical approach to guide you through the Vulkan API, and you will get to build an application throughout the course of the book. Since you are expected to be familiar with C/C++, there is not much hand-holding throughout the course of the book.
Publisher: Packt Publishing Ltd
ISBN: 178646084X
Category : Computers
Languages : en
Pages : 457
Book Description
Discover how to build impressive 3D graphics with the next-generation graphics API—Vulkan About This Book Get started with the Vulkan API and its programming techniques using the easy-to-follow examples to create stunning 3D graphics Understand memory management in Vulkan and implement image and buffer resources Get hands-on with the drawing process and synchronization, and render a 3D graphics scene with the Vulkan graphics pipeline Who This Book Is For This book is ideal for graphic programmers who want to get up and running with Vulkan. It's also great for programmers who have experience with OpenGL and other graphic APIs who want to take advantage of next generation APIs. A good knowledge of C/C++ is expected. What You Will Learn Learn fundamentals of Vulkan programing model to harness the power of modern GPU devices. Implement device, command buffer and queues to get connected with the physical hardware. Explore various validation layers and learn how to use it for debugging Vulkan application. Get a grip on memory management to control host and device memory operations. Understand and implement buffer and image resource types in Vulkan. Define drawing operations in the Render pass and implement graphics pipeline. Manage GLSL shader using SPIR-V and update the shader resources with descriptor sets and push constants. Learn the drawing process, manage resources with synchronization objects and render 3D scene output on screen with Swapchain. Bring realism to your rendered 3D scene with textures, and implement linear and optimal textures In Detail Vulkan, the next generation graphics and compute API, is the latest offering by Khronos. This API is the successor of OpenGL and unlike OpenGL, it offers great flexibility and high performance capabilities to control modern GPU devices. With this book, you'll get great insights into the workings of Vulkan and how you can make stunning graphics run with minimum hardware requirements. We begin with a brief introduction to the Vulkan system and show you its distinct features with the successor to the OpenGL API. First, you will see how to establish a connection with hardware devices to query the available queues, memory types, and capabilities offered. Vulkan is verbose, so before diving deep into programing, you'll get to grips with debugging techniques so even first-timers can overcome error traps using Vulkan's layer and extension features. You'll get a grip on command buffers and acquire the knowledge to record various operation commands into command buffer and submit it to a proper queue for GPU processing. We'll take a detailed look at memory management and demonstrate the use of buffer and image resources to create drawing textures and image views for the presentation engine and vertex buffers to store geometry information. You'll get a brief overview of SPIR-V, the new way to manage shaders, and you'll define the drawing operations as a single unit of work in the Render pass with the help of attachments and subpasses. You'll also create frame buffers and build a solid graphics pipeline, as well as making use of the synchronizing mechanism to manage GPU and CPU hand-shaking. By the end, you'll know everything you need to know to get your hands dirty with the coolest Graphics API on the block. Style and approach This book takes a practical approach to guide you through the Vulkan API, and you will get to build an application throughout the course of the book. Since you are expected to be familiar with C/C++, there is not much hand-holding throughout the course of the book.
OpenGL Superbible
Author: Graham Sellers
Publisher: Addison-Wesley Professional
ISBN: 0134193113
Category : Computers
Languages : en
Pages : 1724
Book Description
OpenGL® SuperBible, Seventh Edition, is the definitive programmer’s guide, tutorial, and reference for OpenGL 4.5, the world’s leading 3D API for real-time computer graphics. The best introduction for any developer, it clearly explains OpenGL’s newest APIs; key extensions; shaders; and essential, related concepts. You’ll find up-to-date, hands-on guidance for all facets of modern OpenGL development—both desktop and mobile. The authors explain what OpenGL does, how it connects to the graphics pipeline, and how it manages huge datasets to deliver compelling experiences. Step by step, they present increasingly sophisticated techniques, illuminating key concepts with worked examples. They introduce OpenGL on several popular platforms, and offer up-to-date best practices and performance advice. This revised and updated edition introduces many new OpenGL 4.5 features, including important ARB and KHR extensions that are now part of the standard. It thoroughly covers the latest Approaching Zero Driver Overhead (AZDO) performance features, and demonstrates key enhancements with new example applications. Coverage includes A practical introduction to real-time 3D graphics, including foundational math Core techniques for rendering, transformations, and texturing Shaders and the OpenGL Shading Language (GLSL) in depth Vertex processing, drawing commands, primitives, fragments, and framebuffers Compute shaders: harnessing graphics cards for more than graphics Pipeline monitoring and control Managing, loading, and arbitrating access to data Building larger applications and deploying them across platforms Advanced rendering: light simulation, artistic and non-photorealistic effects, and more Reducing CPU overhead and analyzing GPU behavior Supercharging performance with persistent maps, bindless textures, and fine-grained synchronization Preventing and debugging errors New applications: texture compression, text drawing, font rendering with distance fields, high-quality texture filtering, and OpenMP Bonus material and sample code are available at openglsuperbible.com.
Publisher: Addison-Wesley Professional
ISBN: 0134193113
Category : Computers
Languages : en
Pages : 1724
Book Description
OpenGL® SuperBible, Seventh Edition, is the definitive programmer’s guide, tutorial, and reference for OpenGL 4.5, the world’s leading 3D API for real-time computer graphics. The best introduction for any developer, it clearly explains OpenGL’s newest APIs; key extensions; shaders; and essential, related concepts. You’ll find up-to-date, hands-on guidance for all facets of modern OpenGL development—both desktop and mobile. The authors explain what OpenGL does, how it connects to the graphics pipeline, and how it manages huge datasets to deliver compelling experiences. Step by step, they present increasingly sophisticated techniques, illuminating key concepts with worked examples. They introduce OpenGL on several popular platforms, and offer up-to-date best practices and performance advice. This revised and updated edition introduces many new OpenGL 4.5 features, including important ARB and KHR extensions that are now part of the standard. It thoroughly covers the latest Approaching Zero Driver Overhead (AZDO) performance features, and demonstrates key enhancements with new example applications. Coverage includes A practical introduction to real-time 3D graphics, including foundational math Core techniques for rendering, transformations, and texturing Shaders and the OpenGL Shading Language (GLSL) in depth Vertex processing, drawing commands, primitives, fragments, and framebuffers Compute shaders: harnessing graphics cards for more than graphics Pipeline monitoring and control Managing, loading, and arbitrating access to data Building larger applications and deploying them across platforms Advanced rendering: light simulation, artistic and non-photorealistic effects, and more Reducing CPU overhead and analyzing GPU behavior Supercharging performance with persistent maps, bindless textures, and fine-grained synchronization Preventing and debugging errors New applications: texture compression, text drawing, font rendering with distance fields, high-quality texture filtering, and OpenMP Bonus material and sample code are available at openglsuperbible.com.
Foundations of 3D Graphics Programming
Author: Jim X. Chen
Publisher: Springer Science & Business Media
ISBN: 184800284X
Category : Computers
Languages : en
Pages : 409
Book Description
OpenGL, which has been bound in C, is a seasoned graphics library for scientists and engineers. As we know, Java is a rapidly growing language becoming the de facto standard of Computer Science learning and application development platform as many undergraduate computer science programs are adopting Java in place of C/C++. Released by Sun Microsystems in June 2003, the recent OpenGL binding with Java, JOGL, provides students, scientists, and engineers a new venue of graphics learning, research, and applications. Overview This book aims to be a shortcut to graphics theory and programming in JOGL. Specifically, it covers OpenGL programming in Java, using JOGL, along with concise computer graphics theories. It covers all graphics basics and several advanced topics without including some implementation details that are not necessary in graphics applications. It also covers some basic concepts in Java programming for C/C++ programmers. It is designed as a textbook for students who know programming basics already. It is an excellent shortcut to learn 3D graphics for scientists and engineers who understand Java programming. It is also a good reference for C/C++ graphics vi Preface programmers to learn Java and JOGL. This book is a companion to Guide to Graphics Software Tools (Springer-Verlag, New York, ISBN 0-387-95049-4), which covers a smaller graphics area with similar examples in C but has a comprehensive list of graphics software tools. Organization and Features This book concisely introduces graphics theory and programming in Java with JOGL.
Publisher: Springer Science & Business Media
ISBN: 184800284X
Category : Computers
Languages : en
Pages : 409
Book Description
OpenGL, which has been bound in C, is a seasoned graphics library for scientists and engineers. As we know, Java is a rapidly growing language becoming the de facto standard of Computer Science learning and application development platform as many undergraduate computer science programs are adopting Java in place of C/C++. Released by Sun Microsystems in June 2003, the recent OpenGL binding with Java, JOGL, provides students, scientists, and engineers a new venue of graphics learning, research, and applications. Overview This book aims to be a shortcut to graphics theory and programming in JOGL. Specifically, it covers OpenGL programming in Java, using JOGL, along with concise computer graphics theories. It covers all graphics basics and several advanced topics without including some implementation details that are not necessary in graphics applications. It also covers some basic concepts in Java programming for C/C++ programmers. It is designed as a textbook for students who know programming basics already. It is an excellent shortcut to learn 3D graphics for scientists and engineers who understand Java programming. It is also a good reference for C/C++ graphics vi Preface programmers to learn Java and JOGL. This book is a companion to Guide to Graphics Software Tools (Springer-Verlag, New York, ISBN 0-387-95049-4), which covers a smaller graphics area with similar examples in C but has a comprehensive list of graphics software tools. Organization and Features This book concisely introduces graphics theory and programming in Java with JOGL.
Object-Oriented Programming for Graphics
Author: Chris Laffra
Publisher: Springer Science & Business Media
ISBN: 3642791921
Category : Computers
Languages : en
Pages : 285
Book Description
Object-oriented concepts are particularly applicable to computer graphics in its broadest sense, including interaction, image synthesis, animation, and computer-aided design. The use of object-oriented techniques in computer graphics is a widely acknowledged way of dealing with the complexities encountered in graphics systems. But the field of object-oriented graphics (OOG) is still young and full of problems. This book reports on latest advances in this field and discusses how the discipline of OOG is being explored and developed. The topics covered include object-oriented constraint programming, object-oriented modeling of graphics applications to handle complexity, object-oriented techniques for developing user interfaces, and 3D modeling and rendering.
Publisher: Springer Science & Business Media
ISBN: 3642791921
Category : Computers
Languages : en
Pages : 285
Book Description
Object-oriented concepts are particularly applicable to computer graphics in its broadest sense, including interaction, image synthesis, animation, and computer-aided design. The use of object-oriented techniques in computer graphics is a widely acknowledged way of dealing with the complexities encountered in graphics systems. But the field of object-oriented graphics (OOG) is still young and full of problems. This book reports on latest advances in this field and discusses how the discipline of OOG is being explored and developed. The topics covered include object-oriented constraint programming, object-oriented modeling of graphics applications to handle complexity, object-oriented techniques for developing user interfaces, and 3D modeling and rendering.