Computational Intelligence for Oncology and Neurological Disorders

Computational Intelligence for Oncology and Neurological Disorders PDF Author: Mrutyunjaya Panda
Publisher: CRC Press
ISBN: 1040085628
Category : Computers
Languages : en
Pages : 292

Get Book Here

Book Description
With the advent of computational intelligence-based approaches, such as bio-inspired techniques, and the availability of clinical data from various complex experiments, medical consultants, researchers, neurologists, and oncologists, there is huge scope for CI-based applications in medical oncology and neurological disorders. This book focuses on interdisciplinary research in this field, bringing together medical practitioners dealing with neurological disorders and medical oncology along with CI investigators. The book collects high-quality original contributions, containing the latest developments or applications of practical use and value, presenting interdisciplinary research and review articles in the field of intelligent systems for computational oncology and neurological disorders. Drawing from work across computer science, physics, mathematics, medical science, psychology, cognitive science, oncology, and neurobiology among others, it combines theoretical, applied, computational, experimental, and clinical research. It will be of great interest to any neurology or oncology researchers focused on computational approaches.

Computational Intelligence for Oncology and Neurological Disorders

Computational Intelligence for Oncology and Neurological Disorders PDF Author: Mrutyunjaya Panda
Publisher: CRC Press
ISBN: 1040085628
Category : Computers
Languages : en
Pages : 292

Get Book Here

Book Description
With the advent of computational intelligence-based approaches, such as bio-inspired techniques, and the availability of clinical data from various complex experiments, medical consultants, researchers, neurologists, and oncologists, there is huge scope for CI-based applications in medical oncology and neurological disorders. This book focuses on interdisciplinary research in this field, bringing together medical practitioners dealing with neurological disorders and medical oncology along with CI investigators. The book collects high-quality original contributions, containing the latest developments or applications of practical use and value, presenting interdisciplinary research and review articles in the field of intelligent systems for computational oncology and neurological disorders. Drawing from work across computer science, physics, mathematics, medical science, psychology, cognitive science, oncology, and neurobiology among others, it combines theoretical, applied, computational, experimental, and clinical research. It will be of great interest to any neurology or oncology researchers focused on computational approaches.

Computational Intelligence in Oncology

Computational Intelligence in Oncology PDF Author: Khalid Raza
Publisher: Springer Nature
ISBN: 9811692211
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
This book encapsulates recent applications of CI methods in the field of computational oncology, especially cancer diagnosis, prognosis, and its optimized therapeutics. The cancer has been known as a heterogeneous disease categorized in several different subtypes. According to WHO’s recent report, cancer is a leading cause of death worldwide, accounting for over 10 million deaths in the year 2020. Therefore, its early diagnosis, prognosis, and classification to a subtype have become necessary as it facilitates the subsequent clinical management and therapeutics plan. Computational intelligence (CI) methods, including artificial neural networks (ANNs), fuzzy logic, evolutionary computations, various machine learning and deep learning, and nature-inspired algorithms, have been widely utilized in various aspects of oncology research, viz. diagnosis, prognosis, therapeutics, and optimized clinical management. Appreciable progress has been made toward the understanding the hallmarks of cancer development, progression, and its effective therapeutics. However, notwithstanding the extrinsic and intrinsic factors which lead to drastic increment in incidence cases, the detection, diagnosis, prognosis, and therapeutics remain an apex challenge for the medical fraternity. With the advent in CI-based approaches, including nature-inspired techniques, and availability of clinical data from various high-throughput experiments, medical consultants, researchers, and oncologists have seen a hope to devise and employ CI in various aspects of oncology. The main aim of the book is to occupy state-of-the-art applications of CI methods which have been derived from core computer sciences to back medical oncology. This edited book covers artificial neural networks, fuzzy logic and fuzzy inference systems, evolutionary algorithms, various nature-inspired algorithms, and hybrid intelligent systems which are widely appreciated for the diagnosis, prognosis, and optimization of therapeutics of various cancers. Besides, this book also covers multi-omics exploration, gene expression analysis, gene signature identification of cancers, genomic characterization of tumors, anti-cancer drug design and discovery, drug response prediction by means of CI, and applications of IoT, IoMT, and blockchain technology in cancer research.

Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence

Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence PDF Author: Anitha S. Pillai
Publisher: Academic Press
ISBN: 0323886264
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence focuses on how the neurosciences can benefit from advances in AI, especially in areas such as medical image analysis for the improved diagnosis of Alzheimer's disease, early detection of acute neurologic events, prediction of stroke, medical image segmentation for quantitative evaluation of neuroanatomy and vasculature, diagnosis of Alzheimer's Disease, autism spectrum disorder, and other key neurological disorders. Chapters also focus on how AI can help in predicting stroke recovery, and the use of Machine Learning and AI in personalizing stroke rehabilitation therapy. Other sections delve into Epilepsy and the use of Machine Learning techniques to detect epileptogenic lesions on MRIs and how to understand neural networks. - Provides readers with an understanding on the key applications of artificial intelligence and machine learning in the diagnosis and treatment of the most important neurological disorders - Integrates recent advancements of artificial intelligence and machine learning to the evaluation of large amounts of clinical data for the early detection of disorders such as Alzheimer's Disease, autism spectrum disorder, Multiple Sclerosis, headache disorder, Epilepsy, and stroke - Provides readers with illustrative examples of how artificial intelligence can be applied to outcome prediction, neurorehabilitation and clinical exams, including a wide range of case studies in predicting and classifying neurological disorders

Advances in Computational Intelligence for the Healthcare Industry 4.0

Advances in Computational Intelligence for the Healthcare Industry 4.0 PDF Author: Shah, Imdad Ali
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 389

Get Book Here

Book Description
In the dynamic environment of healthcare, the fusion of Computational Intelligence and Healthcare Industry 4.0 has enabled remarkable advancements in disease detection and analysis. However, a critical challenge persists – the limitations of current computational intelligence approaches in dealing with small sample sizes. This setback hampers the performance of these innovative models, hindering their potential impact on medical applications. As we stand at the crossroads of technological innovation and healthcare evolution, the need for a solution becomes paramount. Advances in Computational Intelligence for the Healthcare Industry 4.0 is a comprehensive guide addressing the very heart of this challenge. Designed for academics, researchers, healthcare professionals, and stakeholders in Healthcare Industry 4.0, this book serves as a source of innovation. It not only illuminates the complexities of computational intelligence in healthcare but also provides a roadmap for overcoming the limitations posed by small sample sizes. From fundamental principles to innovative concepts, this book offers a holistic perspective, shaping the future of healthcare through the lens of computational intelligence and Healthcare Industry 4.0.

Computational Intelligence in Healthcare Applications

Computational Intelligence in Healthcare Applications PDF Author: Rajeev Agrawal
Publisher: Academic Press
ISBN: 0323993745
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
Computational Intelligence in Healthcare Applications discusses a variety of techniques designed to represent, enhance and empower inter-domain research based on computational intelligence in healthcare. The book serves as a reference for the pervasive healthcare domain which takes into consideration new convergent computing and other applications. The book discusses topics such as mathematical modeling in medical imaging, predictive modeling based on artificial intelligence and deep learning, smart healthcare and wearable devices, and evidence-based predictive modeling. In addition, it discusses computer-aided diagnostic for clinical inferences and pervasive and ubiquitous techniques in healthcare. This book is a valuable resource for graduate students and researchers in medical informatics, however, it is also ideal for members of the biomedical field and healthcare industry who are interested in learning more about novel technologies and their applications in the field. - Presents advanced procedures to address and enhance available diagnostic methods - Focuses on identifying challenges and solutions through an integrated approach that shapes a path for new research dimensions - Discusses the implementation of deep learning techniques for the detection and classification of diseases

Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing

Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing PDF Author: Lopa Mandal
Publisher: Springer Nature
ISBN: 9811916578
Category : Technology & Engineering
Languages : en
Pages : 466

Get Book Here

Book Description
This book includes selected papers presented at International Conference on Computational Intelligence, Data Science,, and Cloud Computing (IEM-ICDC 2021), organized by the Department of Information Technology Institute of Engineering and Management, Kolkata, India, during December 22 – 24, 2021. It covers substantial new findings about AI and robotics, image processing and NLP, cloud computing and big data analytics as well as in cyber-security, blockchain and IoT, and various allied fields. The book serves as a reference resource for researchers and practitioners in academia and industry.

Computational Intelligence and Healthcare Informatics

Computational Intelligence and Healthcare Informatics PDF Author: Om Prakash Jena
Publisher: John Wiley & Sons
ISBN: 1119818680
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.

Computational Intelligence in Healthcare

Computational Intelligence in Healthcare PDF Author: Meenu Gupta
Publisher: CRC Press
ISBN: 1000829448
Category : Computers
Languages : en
Pages : 227

Get Book Here

Book Description
Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. Artificial intelligent systems offer great improvement in healthcare systems by providing more intelligent and convenient solutions and services assisted by machine learning, wireless communications, data analytics, cognitive computing, and mobile computing. Modern health treatments are faced with the challenge of acquiring, analysing, and applying the large amount of knowledge necessary to solve complex problems. AI techniques are being effectively used in the field of healthcare systems by extracting the useful information from the vast amounts of data by applying human expertise and CI methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods which have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with them. Contained in the book are state-of-the-art CI methods and other allied techniques used in healthcare systems as well as advances in different CI methods that confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide the latest research related to the healthcare sector to researchers and engineers with a platform encompassing state-of-the-art innovations, research and design, and the implementation of methodologies.

Radiomics and Radiogenomics in Neuro-Oncology

Radiomics and Radiogenomics in Neuro-Oncology PDF Author: Sanjay Saxena
Publisher: Elsevier
ISBN: 0443185077
Category : Medical
Languages : en
Pages : 330

Get Book Here

Book Description
Neuro-oncology broadly encompasses life-threatening brain and spinal cord malignancies, including primary lesions and lesions metastasizing to the central nervous system. It is well suited for diagnosis, classification, and prognosis as well as assessing treatment response. Radiomics and Radiogenomics (R-n-R) have become two central pillars in precision medicine for neuro-oncology.Radiomics is an approach to medical imaging used to extract many quantitative imaging features using different data characterization algorithms, while Radiogenomics, which has recently emerged as a novel mechanism in neuro-oncology research, focuses on the relationship of imaging phenotype and genetics of cancer. Due to the exponential progress of different computational algorithms, AI methods are composed to advance the precision of diagnostic and therapeutic approaches in neuro-oncology.The field of radiomics has been and definitely will remain at the lead of this emerging discipline due to its efficiency in the field of neuro-oncology. Several AI approaches applied to conventional and advanced medical imaging data from the perspective of radiomics are very efficient for tasks such as survival prediction, heterogeneity analysis of cancer, pseudo progression analysis, and infiltrating tumors. Radiogenomics advances our understanding and knowledge of cancer biology, letting noninvasive sampling of the molecular atmosphere with high spatial resolution along with a systems-level understanding of causal heterogeneous molecular and cellular processes. These AI-based R-n-R tools have the potential to stratify patients into more precise initial diagnostic and therapeutic pathways and permit better dynamic treatment monitoring in this period of personalized medicine. While extremely promising, the clinical acceptance of R-n-R methods and approaches will primarily hinge on their resilience to non-standardization across imaging protocols and their capability to show reproducibility across large multi-institutional cohorts.Radiomics and Radiogenomics in Neuro-Oncology: An Artificial Intelligence Paradigm provides readers with a broad and detailed framework for R-n-R approaches with AI in neuro-oncology, the description of cancer biology and genomics study of cancer, and the methods usually implemented for analyzing. Readers will also learn about the current solutions R-n-R can offer for personalized treatments of patients, limitations, and prospects. There is comprehensive coverage of information based on radiomics, radiogenomics, cancer biology, and medical image analysis viewpoints on neuro-oncology, so this in-depth coverage is divided into two Volumes.Volume 1: Radiogenomics Flow Using Artificial Intelligence provides coverage of genomics and molecular study of brain cancer, medical imaging modalities and analysis in neuro-oncology, and prognostic and predictive models using radiomics.Volume 2: Genetics and Clinical Applications provides coverage of imaging signatures for brain cancer molecular characteristics, clinical applications of R-n-R in neuro-oncology, and Machine Learning and Deep Learning AI approaches for R-n-R in neuro-oncology. - Includes coverage on the foundational concepts of the emerging fields of radiomics and radiogenomics - Covers neural engineering modeling and AI algorithms for the imaging, diagnosis, and predictive modeling of neuro-oncology - Presents crucial technologies and software platforms, along with advanced brain imaging techniques such as quantitative imaging using CT, PET, and MRI - Provides in-depth technical coverage of computational modeling techniques and applied mathematics for brain tumor segmentation and radiomics features such as extraction and selection

Integrating Neuroimaging, Computational Neuroscience, and Artificial Intelligence

Integrating Neuroimaging, Computational Neuroscience, and Artificial Intelligence PDF Author: Indranath Chatterjee
Publisher: CRC Press
ISBN: 1040216293
Category : Medical
Languages : en
Pages : 273

Get Book Here

Book Description
Unveil the next frontier in neurodegenerative disorder research with Integrating Neuroimaging, Computational Neuroscience, and Artificial Intelligence. This groundbreaking book goes beyond traditional approaches, utilizing the power of interdisciplinary integration to illuminate new pathways in diagnosis and treatment. From AI-driven diagnostics to computational neuroscience models, this book showcases the forefront of innovation. Join us in exploring the future of neurodegenerative care, where collaboration and cutting-edge technology converge to redefine possibilities. Key Features: Integrates diverse fields of research, from neuroimaging to computational neuroscience and Artificial Intelligence. Emphasizes the translation of research findings into practical applications, ultimately benefitting patients and clinical practice. Reviews the implementation of Artificial Intelligence and computational models in diagnostic settings. Elucidates the current state of translational neuroscience exploring potential areas for further research and collaboration, including personalized treatments and drug development. Contributions from an international team of experts from diverse disciplines.