Author: Randall C. O'Reilly
Publisher: MIT Press
ISBN: 9780262650540
Category : Medical
Languages : en
Pages : 540
Book Description
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.
Computational Explorations in Cognitive Neuroscience
Author: Randall C. O'Reilly
Publisher: MIT Press
ISBN: 9780262650540
Category : Medical
Languages : en
Pages : 540
Book Description
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.
Publisher: MIT Press
ISBN: 9780262650540
Category : Medical
Languages : en
Pages : 540
Book Description
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.
A Short Dialogue Betwixt Necessitato and Liberato
Author:
Publisher:
ISBN:
Category : Necessitarian or Best scheme
Languages : en
Pages : 8
Book Description
Publisher:
ISBN:
Category : Necessitarian or Best scheme
Languages : en
Pages : 8
Book Description
Computational Cognitive Neuroscience
Author: Yuko Munakata
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 188
Book Description
Introduction to computer modeling of the brain, to understand how people think. Networks of interacting neurons produce complex emergent behavior including perception, attention, motor control, learning, memory, language, and executive functions (motivation, decision making, planning, etc).
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 188
Book Description
Introduction to computer modeling of the brain, to understand how people think. Networks of interacting neurons produce complex emergent behavior including perception, attention, motor control, learning, memory, language, and executive functions (motivation, decision making, planning, etc).
The Cambridge Handbook of Computational Psychology
Author: Ron Sun
Publisher: Cambridge University Press
ISBN: 0521674107
Category : Computers
Languages : en
Pages : 767
Book Description
A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.
Publisher: Cambridge University Press
ISBN: 0521674107
Category : Computers
Languages : en
Pages : 767
Book Description
A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.
Computational Modeling in Cognition
Author: Stephan Lewandowsky
Publisher: SAGE
ISBN: 1452236194
Category : Psychology
Languages : en
Pages : 377
Book Description
An accessible introduction to the principles of computational and mathematical modeling in psychology and cognitive science This practical and readable work provides students and researchers, who are new to cognitive modeling, with the background and core knowledge they need to interpret published reports, and develop and apply models of their own. The book is structured to help readers understand the logic of individual component techniques and their relationships to each other.
Publisher: SAGE
ISBN: 1452236194
Category : Psychology
Languages : en
Pages : 377
Book Description
An accessible introduction to the principles of computational and mathematical modeling in psychology and cognitive science This practical and readable work provides students and researchers, who are new to cognitive modeling, with the background and core knowledge they need to interpret published reports, and develop and apply models of their own. The book is structured to help readers understand the logic of individual component techniques and their relationships to each other.
Introduction to Modeling Cognitive Processes
Author: Tom Verguts
Publisher: MIT Press
ISBN: 0262362317
Category : Science
Languages : en
Pages : 265
Book Description
An introduction to computational modeling for cognitive neuroscientists, covering both foundational work and recent developments. Cognitive neuroscientists need sophisticated conceptual tools to make sense of their field’s proliferation of novel theories, methods, and data. Computational modeling is such a tool, enabling researchers to turn theories into precise formulations. This book offers a mathematically gentle and theoretically unified introduction to modeling cognitive processes. Theoretical exercises of varying degrees of difficulty throughout help readers develop their modeling skills. After a general introduction to cognitive modeling and optimization, the book covers models of decision making; supervised learning algorithms, including Hebbian learning, delta rule, and backpropagation; the statistical model analysis methods of model parameter estimation and model evaluation; the three recent cognitive modeling approaches of reinforcement learning, unsupervised learning, and Bayesian models; and models of social interaction. All mathematical concepts are introduced gradually, with no background in advanced topics required. Hints and solutions for exercises and a glossary follow the main text. All code in the book is Python, with the Spyder editor in the Anaconda environment. A GitHub repository with Python files enables readers to access the computer code used and start programming themselves. The book is suitable as an introduction to modeling cognitive processes for students across a range of disciplines and as a reference for researchers interested in a broad overview.
Publisher: MIT Press
ISBN: 0262362317
Category : Science
Languages : en
Pages : 265
Book Description
An introduction to computational modeling for cognitive neuroscientists, covering both foundational work and recent developments. Cognitive neuroscientists need sophisticated conceptual tools to make sense of their field’s proliferation of novel theories, methods, and data. Computational modeling is such a tool, enabling researchers to turn theories into precise formulations. This book offers a mathematically gentle and theoretically unified introduction to modeling cognitive processes. Theoretical exercises of varying degrees of difficulty throughout help readers develop their modeling skills. After a general introduction to cognitive modeling and optimization, the book covers models of decision making; supervised learning algorithms, including Hebbian learning, delta rule, and backpropagation; the statistical model analysis methods of model parameter estimation and model evaluation; the three recent cognitive modeling approaches of reinforcement learning, unsupervised learning, and Bayesian models; and models of social interaction. All mathematical concepts are introduced gradually, with no background in advanced topics required. Hints and solutions for exercises and a glossary follow the main text. All code in the book is Python, with the Spyder editor in the Anaconda environment. A GitHub repository with Python files enables readers to access the computer code used and start programming themselves. The book is suitable as an introduction to modeling cognitive processes for students across a range of disciplines and as a reference for researchers interested in a broad overview.
Author:
Publisher: IOS Press
ISBN:
Category :
Languages : en
Pages : 4947
Book Description
Publisher: IOS Press
ISBN:
Category :
Languages : en
Pages : 4947
Book Description
MATLAB for Neuroscientists
Author: Pascal Wallisch
Publisher: Academic Press
ISBN: 0123838371
Category : Psychology
Languages : en
Pages : 571
Book Description
MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. - The first complete volume on MATLAB focusing on neuroscience and psychology applications - Problem-based approach with many examples from neuroscience and cognitive psychology using real data - Illustrated in full color throughout - Careful tutorial approach, by authors who are award-winning educators with strong teaching experience
Publisher: Academic Press
ISBN: 0123838371
Category : Psychology
Languages : en
Pages : 571
Book Description
MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. - The first complete volume on MATLAB focusing on neuroscience and psychology applications - Problem-based approach with many examples from neuroscience and cognitive psychology using real data - Illustrated in full color throughout - Careful tutorial approach, by authors who are award-winning educators with strong teaching experience
Lectures in Supercomputational Neuroscience
Author: Peter Graben
Publisher: Springer
ISBN: 3540731598
Category : Science
Languages : en
Pages : 374
Book Description
Written from the physicist’s perspective, this book introduces computational neuroscience with in-depth contributions by system neuroscientists. The authors set forth a conceptual model for complex networks of neurons that incorporates important features of the brain. The computational implementation on supercomputers, discussed in detail, enables you to adapt the algorithm for your own research. Worked-out examples of applications are provided.
Publisher: Springer
ISBN: 3540731598
Category : Science
Languages : en
Pages : 374
Book Description
Written from the physicist’s perspective, this book introduces computational neuroscience with in-depth contributions by system neuroscientists. The authors set forth a conceptual model for complex networks of neurons that incorporates important features of the brain. The computational implementation on supercomputers, discussed in detail, enables you to adapt the algorithm for your own research. Worked-out examples of applications are provided.
The Oxford Handbook of Cognitive Science
Author: Susan F. Chipman
Publisher: Oxford University Press
ISBN: 0199842191
Category : Computers
Languages : en
Pages : 393
Book Description
The Oxford Handbook of Cognitive Science emphasizes the research and theory most central to modern cognitive science: computational theories of complex human cognition. Additional facets of cognitive science are discussed in the handbook's introductory chapter.
Publisher: Oxford University Press
ISBN: 0199842191
Category : Computers
Languages : en
Pages : 393
Book Description
The Oxford Handbook of Cognitive Science emphasizes the research and theory most central to modern cognitive science: computational theories of complex human cognition. Additional facets of cognitive science are discussed in the handbook's introductory chapter.