Computational Engineering Geology

Computational Engineering Geology PDF Author: Edward Derringh
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
Designed to be a supplemental text for an undergraduate, sophomore/junior-level introductory course in engineering geology. An ideal core text, it is equally suitable for use alongside an introductory text in physical geology for engineers, or as a supplement to an established undergraduate text in engineering geology. Unique in its genre, this highly practical supplementary text to engineering geology centers around solving real-world problems, while covering such standard topics as stress, the stability of rock slopes, groundwater flow, and seismology.

Computational Engineering Geology

Computational Engineering Geology PDF Author: Edward Derringh
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
Designed to be a supplemental text for an undergraduate, sophomore/junior-level introductory course in engineering geology. An ideal core text, it is equally suitable for use alongside an introductory text in physical geology for engineers, or as a supplement to an established undergraduate text in engineering geology. Unique in its genre, this highly practical supplementary text to engineering geology centers around solving real-world problems, while covering such standard topics as stress, the stability of rock slopes, groundwater flow, and seismology.

Computational Geosciences with Mathematica

Computational Geosciences with Mathematica PDF Author: William Haneberg
Publisher: Springer Science & Business Media
ISBN: 3642185541
Category : Science
Languages : en
Pages : 386

Get Book Here

Book Description
Computational Geosciences with Mathematica is the only book written by a geologist specifically to show geologists and geoscientists how to use Mathematica to formulate and solve problems. It spans a broad range of geologic and mathematical topics, which are drawn from the author's extensive experience in research, consulting, and teaching. The reference and text leads readers step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. It is packed with actual Mathematica output and includes boxed Computer Notes with tips and exploration suggestions.

Mapping in Engineering Geology

Mapping in Engineering Geology PDF Author: Dr. James S. Griffiths
Publisher: Geological Society of London
ISBN: 9781862391017
Category : Science
Languages : en
Pages : 296

Get Book Here

Book Description


Handbook of Research on Trends and Digital Advances in Engineering Geology

Handbook of Research on Trends and Digital Advances in Engineering Geology PDF Author: Ceryan, Nurcihan
Publisher: IGI Global
ISBN: 1522527109
Category : Science
Languages : en
Pages : 788

Get Book Here

Book Description
Engineering geologists face the task of addressing geological factors that can affect planning with little time and with few resources. A solution is using the right tools to save time searching for answers and devote attention to making critical engineering decisions. The Handbook of Research on Trends and Digital Advances in Engineering Geology is an essential reference source for the latest research on new trends, technology, and computational methods that can model engineering phenomena automatically. Featuring exhaustive coverage on a broad range of topics and perspectives such as acoustic energy, landslide mapping, and natural hazards, this publication is ideally designed for academic scientists, industry and applied researchers, and policy and decision makers seeking current research on new tools to aid in timely decision-making of critical engineering situations.

Computational Multiphase Geomechanics

Computational Multiphase Geomechanics PDF Author: Fusao Oka
Publisher: CRC Press
ISBN: 1000474992
Category : Technology & Engineering
Languages : en
Pages : 354

Get Book Here

Book Description
Numerical methods are very powerful tools for use in geotechnical engineering, particularly in computational geotechnics. Interest is strong in the new field of multi-phase nature of geomaterials, and the area of computational geotechnics is expanding. Alongside their companion volume Computational Modeling of Multiphase Geomaterials (CRC Press, 2012), Fusao Oka and Sayuri Kimoto cover recent progress in several key areas, such as air-water-soil mixture, cyclic constitutive models, anisotropic models, noncoaxial models, gradient models, compaction bands (a form of volumetric strain localization and strain localization under dynamic conditions), and the instability of unsaturated soils. The text also includes applications of computational modeling to large-scale excavation of ground, liquefaction analysis of levees during earthquakes, methane hydrate development, and the characteristics of contamination using bentonite. The erosion of embankments due to seepage flow is also presented.

Biology, Sociology, Geology by Computational Physicists

Biology, Sociology, Geology by Computational Physicists PDF Author: Dietrich Stauffer
Publisher: Elsevier
ISBN: 0080462022
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
The book requires only rudimentary physics knowledge but ability to program computers creatively and to keep the mind open to simple and not so simple models, based in individuals, for the living world around us.* Interdisciplinary coverage* Research oriented* Contains and explains programs* Based on recent discoveries* Little special knowledge required besides programming* Suitable for undergraduate and graduate research projects

Groundwater Hydrology

Groundwater Hydrology PDF Author: K. R. Rushton
Publisher: John Wiley & Sons
ISBN: 0470871652
Category : Science
Languages : en
Pages : 430

Get Book Here

Book Description
Groundwater is a vital source of water throughout the world. As the number of groundwater investigations increase, it is important to understand how to develop comprehensive quantified conceptual models and appreciate the basis of analytical solutions or numerical methods of modelling groundwater flow. Groundwater Hydrology: Conceptual and Computational Models describes advances in both conceptual and numerical modelling. It gives insights into the interpretation of field information, the development of conceptual models, the use of computational models based on analytical and numerical techniques, the assessment of the adequacy of models, and the use of computational models for predictive purposes. It focuses on the study of groundwater flow problems and a thorough analysis of real practical field case studies. It is divided into three parts: * Part I deals with the basic principles, including a summary of mathematical descriptions of groundwater flow, recharge estimation using soil moisture balance techniques, and extensive studies of groundwater-surface water interactions. * Part II focuses on the concepts and methods of analysis for radial flow to boreholes including topics such as large diameter wells, multi-layered aquifer systems, aquitard storage and the prediction of long-term yield. * Part III examines regional groundwater flow including situations when vertical flows are important or transmissivities change with saturated depth. Suitable for practising engineers, hydrogeologists, researchers in groundwater and irrigation, mathematical modellers, groundwater scientists, and water resource specialists. Appropriate for upper level undergraduates and MSc students in Departments of Civil Engineering, Environmental Engineering, Earth Science and Physical Geography. It would also be useful for hydrologists, civil engineers, physical geographers, agricultural engineers, consultancy firms involved in water resource projects, and overseas development workers.

Fundamentals of Computational Geoscience

Fundamentals of Computational Geoscience PDF Author: Chongbin Zhao
Publisher: Springer Science & Business Media
ISBN: 3540897437
Category : Science
Languages : en
Pages : 248

Get Book Here

Book Description
Geoscience is a fundamental natural science discipline dealing with the origin, evolutionary history and behaviour of the planet Earth. As a result of its complicated and complex nature, the Earth system not only provides the necessary materials and environment for mankind to live, but also brings many types of natural disasters, such as earthquakes, volcanic eruptions, tsunamis, ?oods and tornadoes, to mention just a few. With the ever-increasing demand for improving our living standards, it has been recognized that the existing natural resources will be exhausted in the near future and that our living environments are, in fact, deteriorating. To maintain the sustainable development of our living standards and the further improvement of our living environments, an inevitable and challenging task that geoscientists are now confronting is how accurately to predict not only the occurrences of these natural disasters, but also the locations of large concealed natural resources in the deep Earth. For this reason, geoscientists must study the processes, rules and laws, by which the Earth system operates, instead of simply describing and observing g- science phenomena.

Insights and Innovations in Structural Engineering, Mechanics and Computation

Insights and Innovations in Structural Engineering, Mechanics and Computation PDF Author: Alphose Zingoni
Publisher: CRC Press
ISBN: 1317280628
Category : Technology & Engineering
Languages : en
Pages : 3395

Get Book Here

Book Description
Insights and Innovations in Structural Engineering, Mechanics and Computation comprises 360 papers that were presented at the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016, Cape Town, South Africa, 5-7 September 2016). The papers reflect the broad scope of the SEMC conferences, and cover a wide range of engineering structures (buildings, bridges, towers, roofs, foundations, offshore structures, tunnels, dams, vessels, vehicles and machinery) and engineering materials (steel, aluminium, concrete, masonry, timber, glass, polymers, composites, laminates, smart materials). Some contributions present the latest insights and new understanding on (i) the mechanics of structures and systems (dynamics, vibration, seismic response, instability, buckling, soil-structure interaction), and (ii) the mechanics of materials and fluids (elasticity, plasticity, fluid-structure interaction, flow through porous media, biomechanics, fracture, fatigue, bond, creep, shrinkage). Other contributions report on (iii) recent advances in computational modelling and testing (numerical simulations, finite-element modeling, experimental testing), and (iv) developments and innovations in structural engineering (planning, analysis, design, construction, assembly, maintenance, repair and retrofitting of structures). Insights and Innovations in Structural Engineering, Mechanics and Computation is particularly of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find the content useful. Short versions of the papers, intended to be concise but self-contained summaries of the full papers, are collected in the book, while the full versions of the papers are on the accompanying CD.

Computational Methods for Geodynamics

Computational Methods for Geodynamics PDF Author: Alik Ismail-Zadeh
Publisher: Cambridge University Press
ISBN: 1139489356
Category : Science
Languages : en
Pages : 333

Get Book Here

Book Description
Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.