Complexity and Evolution of Dissipative Systems

Complexity and Evolution of Dissipative Systems PDF Author: Sergey Vakulenko
Publisher: Walter de Gruyter
ISBN: 3110268280
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
This book focuses on the dynamic complexity of neural, genetic networks, and reaction diffusion systems. The author shows that all robust attractors can be realized in dynamics of such systems. In particular, a positive solution of the Ruelle-Takens hypothesis for on chaos existence for large class of reaction-diffusion systems is given. The book considers viability problems for such systems - viability under extreme random perturbations - and discusses an interesting hypothesis of M. Gromov and A. Carbone on biological evolution. There appears a connection with the Kolmogorov complexity theory. As applications, transcription-factors-microRNA networks are considered, patterning in biology, a new approach to estimate the computational power of neural and genetic networks, social and economical networks, and a connection with the hard combinatorial problems.

Complexity and Evolution of Dissipative Systems

Complexity and Evolution of Dissipative Systems PDF Author: Sergey Vakulenko
Publisher: Walter de Gruyter
ISBN: 3110268280
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
This book focuses on the dynamic complexity of neural, genetic networks, and reaction diffusion systems. The author shows that all robust attractors can be realized in dynamics of such systems. In particular, a positive solution of the Ruelle-Takens hypothesis for on chaos existence for large class of reaction-diffusion systems is given. The book considers viability problems for such systems - viability under extreme random perturbations - and discusses an interesting hypothesis of M. Gromov and A. Carbone on biological evolution. There appears a connection with the Kolmogorov complexity theory. As applications, transcription-factors-microRNA networks are considered, patterning in biology, a new approach to estimate the computational power of neural and genetic networks, social and economical networks, and a connection with the hard combinatorial problems.

Patterns and Interfaces in Dissipative Dynamics

Patterns and Interfaces in Dissipative Dynamics PDF Author: L.M. Pismen
Publisher: Springer Science & Business Media
ISBN: 3540304312
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.

Thinking in Complexity

Thinking in Complexity PDF Author: Klaus Mainzer
Publisher: Springer Science & Business Media
ISBN: 3662033054
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
Since the first edition sold out in less than a year, we now present the revised second edition of Mainzer's popular book. The theory of nonlinear complex systems has become a successful problem-solving approach in the natural sciences from laser physics, quantum chaos, and meteorology to computer simulations of cell growth in biology. It is now recognized that many of our social, ecological, and political problems are also of a global, complex, and nonlinear nature. And one of the most exciting contemporary topics is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems. In this wide-ranging but concise treatment, Prof. Mainzer discusses, in a nontechnical language, the common framework behind these endeavors. Emphasis is given to the evolution of new structures in natural and cultural systems and we see clearly how the new integrative approach can give insights not available from traditional reductionistic methods.

Thinking in Complexity

Thinking in Complexity PDF Author: Klaus Mainzer
Publisher: Springer Science & Business Media
ISBN: 3662053640
Category : Science
Languages : en
Pages : 466

Get Book Here

Book Description
This new edition also treats smart materials and artificial life. A new chapter on information and computational dynamics takes up many recent discussions in the community.

Evolution of Spontaneous Structures in Dissipative Continuous Systems

Evolution of Spontaneous Structures in Dissipative Continuous Systems PDF Author: Friedrich H. Busse
Publisher: Springer Science & Business Media
ISBN: 3540651543
Category : Language Arts & Disciplines
Languages : en
Pages : 592

Get Book Here

Book Description
This collection of articles forms a cohesive text on the rapidly evolving field of nonlinear dynamics of continous systems. It addresses researchers but it can also be used as a text for graduate work. The authors demonstrate through numerous examples the use of common tools of mathematical analyses and dynamical interpretations for the study of nonlinear phenomena. Instead of providing a comprehensive overview of the rapidly evolving field, the contributors treat the essence of what is known about the formation of spontaneous structures in dissipative continuous systems and about the competition between order and chaos that characterizes those systems. The topics discussed in this volume range from mathematical foundations to interpretations of concrete phenomena in fluids, chemical reactions, structure forming processes in semiconductors and even granular matter.

Evolution of Complex Systems

Evolution of Complex Systems PDF Author: Rainer Feistel
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description


Self-Organization in Nonequilibrium Systems

Self-Organization in Nonequilibrium Systems PDF Author: Gregoire Nicolis
Publisher: Wiley-VCH
ISBN:
Category : Reference
Languages : en
Pages : 520

Get Book Here

Book Description
Membranes, Dissipative Structures, and Evolution Edited by G. Nicolis & R. Lefever Focuses on the problem of the emergence/maintenance of biological order at successively higher levels of complexity. Covers the spatiotemporal organization of simple biochemical networks; the formation of pluricellular or macromolecular assemblies; the evolution of these structures; and the functions of specific biological structures. Volume 29 in Advances in Chemical Physics Series, I. Prigogine & Stuart A. Rice, Editors. 1975 Theory and Applications of Molecular Paramagnetism Edited by E. A. Boudreaux & L. N. Mulay Comprehensively treats the basic theory of paramagnetic phenomena from both the classical and mechanical vantages. It examines the magnetic behavior of Lanthanide and Actinide elements as well as traditional transition metals. For each class of compounds, appropriate details of descriptive and mathematical theory are given before their applications. 1976 Theory and Aapplications of Molecular Diamagnetism Edited by L. N. Mulay & E. A. Boudreaux An invaluable reference for solving chemical problems in magnetics, magnetochemistry, and related areas where magnetic data are important, such as solid-state physics and optical spectroscopy. 1976

Dissipative Solitons in Reaction Diffusion Systems

Dissipative Solitons in Reaction Diffusion Systems PDF Author: Andreas Liehr
Publisher: Springer Science & Business Media
ISBN: 3642312519
Category : Science
Languages : en
Pages : 227

Get Book Here

Book Description
Why writing a book about a specialized task of the large topic of complex systems? And who will read it? The answer is simple: The fascination for a didactically valuable point of view, the elegance of a closed concept and the lack of a comprehensive disquisition. The fascinating part is that field equations can have localized solutions exhibiting the typical characteristics of particles. Regarding the field equations this book focuses on, the field phenomenon of localized solutions can be described in the context of a particle formalism, which leads to a set of ordinary differential equations covering the time evolution of the position and the velocity of each particle. Moreover, starting from these particle dynamics and making the transition to many body systems, one considers typical phenomena of many body systems as shock waves and phase transitions, which themselves can be described as field phenomena. Such transitions between different level of modelling are well known from conservative systems, where localized solutions of quantum field theory lead to the mechanisms of elementary particle interaction and from this to field equations describing the properties of matter. However, in dissipative systems such transitions have not been considered yet, which is adjusted by the presented book. The elegance of a closed concept starts with the observation of self-organized current filaments in a semiconductor gas discharge system. These filaments move on random paths and exhibit certain particle features like scattering or the formation of bound states. Neither the reasons for the propagation of the filaments nor the laws of the interaction between the filaments can be registered by direct observations. Therefore a model is established, which is phenomenological in the first instance due to the complexity of the experimental system. This model allows to understand the existence of localized structures, their mechanisms of movement, and their interaction, at least, on a qualitative level. But this model is also the starting point for developing a data analysis method that enables the detection of movement and interaction mechanisms of the investigated localized solutions. The topic is rounded of by applying the data analysis to real experimental data and comparing the experimental observations to the predictions of the model. A comprehensive publication covering the interesting topic of localized solutions in reaction diffusion systems in its width and its relation to the well known phenomena of spirals and patterns does not yet exist, and this is the third reason for writing this book. Although the book focuses on a specific experimental system the model equations are as simple as possible so that the discussed methods should be adaptable to a large class of systems showing particle-like structures. Therefore, this book should attract not only the experienced scientist, who is interested in self-organization phenomena, but also the student, who would like to understand the investigation of a complex system on the basis of a continuous description.

Dynamics Of Complex Systems

Dynamics Of Complex Systems PDF Author: Yaneer Bar-yam
Publisher: CRC Press
ISBN: 0429717598
Category : Mathematics
Languages : en
Pages : 866

Get Book Here

Book Description
This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.

Complexity, Chaos, and Biological Evolution

Complexity, Chaos, and Biological Evolution PDF Author: Erik Mosekilde
Publisher: Springer Science & Business Media
ISBN: 1468478478
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
From time to time, perhaps a few times each century, a revolution occurs that questions some of our basic beliefs and sweeps across otherwise well guarded disciplinary boundaries. These are the periods when science is fun, when new paradigms have to be formulated, and when young scientists can do serious work without first having to acquire all the knowledge of their teachers. The emergence of nonlinear science appears to be one such revolution. In a surprising manner, this new science has disclosed a number of misconceptions in our traditional understanding of determinism. In particular, it has been shown that the notion of predictability, according to which the trajectory of a system can be precisely determined if one knows the equations of motion and the initial conditions, is related to textbook examples of simple; integrable systems. This predictability does not extend to nonlinear, conservative systems in general. Dissipative systems can also show unpredictability, provided that the motion is sustained by externally supplied energy and/or resources. These discoveries, and the associated discovery that even relatively simple nonlinear systems can show extremely complex behavior, have brought about an unprecedented feeling of common interest among scientists from many different disciplines. During the last decade or two we have come to understand that there are universal routes to chaos, we have learned about stretching and folding, and we have discovered the beautiful fractal geometry underlying chaotic attractors.