Complex-valued Neural Networks

Complex-valued Neural Networks PDF Author: Akira Hirose
Publisher: World Scientific
ISBN: 9812384642
Category : Computers
Languages : en
Pages : 387

Get Book Here

Book Description
In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.

Complex-valued Neural Networks

Complex-valued Neural Networks PDF Author: Akira Hirose
Publisher: World Scientific
ISBN: 9812384642
Category : Computers
Languages : en
Pages : 387

Get Book Here

Book Description
In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.

Complex-Valued Neural Networks with Multi-Valued Neurons

Complex-Valued Neural Networks with Multi-Valued Neurons PDF Author: Igor Aizenberg
Publisher: Springer
ISBN: 3642203531
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.

Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters

Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters PDF Author: Nitta, Tohru
Publisher: IGI Global
ISBN: 1605662151
Category : Computers
Languages : en
Pages : 504

Get Book Here

Book Description
"This book covers the current state-of-the-art theories and applications of neural networks with high-dimensional parameters"--Provided by publisher.

Complex Valued Nonlinear Adaptive Filters

Complex Valued Nonlinear Adaptive Filters PDF Author: Danilo P. Mandic
Publisher: John Wiley & Sons
ISBN: 0470742631
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
This book was written in response to the growing demand for a text that provides a unified treatment of linear and nonlinear complex valued adaptive filters, and methods for the processing of general complex signals (circular and noncircular). It brings together adaptive filtering algorithms for feedforward (transversal) and feedback architectures and the recent developments in the statistics of complex variable, under the powerful frameworks of CR (Wirtinger) calculus and augmented complex statistics. This offers a number of theoretical performance gains, which is illustrated on both stochastic gradient algorithms, such as the augmented complex least mean square (ACLMS), and those based on Kalman filters. This work is supported by a number of simulations using synthetic and real world data, including the noncircular and intermittent radar and wind signals.

Security and Privacy in Digital Economy

Security and Privacy in Digital Economy PDF Author: Shui Yu
Publisher: Springer Nature
ISBN: 9811591296
Category : Computers
Languages : en
Pages : 756

Get Book Here

Book Description
This book constitutes the refereed proceedings of the First International Conference on Security and Privacy in Digital Economy, SPDE 2020, held in Quzhou, China, in October 2020*. The 49 revised full papers and 2 short papers were carefully reviewed and selected from 132 submissions. The papers are organized in topical sections: ​cyberspace security, privacy protection, anomaly and intrusion detection, trust computation and forensics, attacks and countermeasures, covert communication, security protocol, anonymous communication, security and privacy from social science. *The conference was held virtually due to the COVID-19 pandemic.

Neural Networks

Neural Networks PDF Author: Berndt Müller
Publisher: Springer Science & Business Media
ISBN: 3642577601
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.

Complex-Valued Neural Networks

Complex-Valued Neural Networks PDF Author: Akira Hirose
Publisher: John Wiley & Sons
ISBN: 1118590066
Category : Computers
Languages : en
Pages : 238

Get Book Here

Book Description
Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and superconducting waves. This fact is a critical advantage in practical applications in diverse fields of engineering, where signals are routinely analyzed and processed in time/space, frequency, and phase domains. Complex-Valued Neural Networks: Advances and Applications covers cutting-edge topics and applications surrounding this timely subject. Demonstrating advanced theories with a wide range of applications, including communication systems, image processing systems, and brain-computer interfaces, this text offers comprehensive coverage of: Conventional complex-valued neural networks Quaternionic neural networks Clifford-algebraic neural networks Presented by international experts in the field, Complex-Valued Neural Networks: Advances and Applications is ideal for advanced-level computational intelligence theorists, electromagnetic theorists, and mathematicians interested in computational intelligence, artificial intelligence, machine learning theories, and algorithms.

Building Neural Networks

Building Neural Networks PDF Author: David M. Skapura
Publisher: Addison-Wesley Professional
ISBN: 9780201539219
Category : Computers
Languages : en
Pages : 308

Get Book Here

Book Description
Organized by application areas, rather than by specific network architectures or learning algorithms, Building Neural Networks shows why certain networks are more suitable than others for solving specific kinds of problems. Skapura also reviews principles of neural information processing and furnishes an operations summary of the most popular neural-network processing models.

Complex-Valued Neural Networks

Complex-Valued Neural Networks PDF Author: Akira Hirose
Publisher: Springer Science & Business Media
ISBN: 3642276318
Category : Computers
Languages : en
Pages : 205

Get Book Here

Book Description
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplinary studies to realize comfortable society. It is also helpful to those who carry out research and development regarding new products and services at companies. The author wrote this book hoping in particular that it provides the readers with meaningful hints to make good use of neural networks in fully practical applications. The book emphasizes basic ideas and ways of thinking. Why do we need to consider neural networks that deal with complex numbers? What advantages do the complex-valued neural networks have? What is the origin of the advantages? In what areas do they develop principal applications? This book answers these questions by describing details and examples, which will inspire the readers with new ideas. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplinary studies to realize comfortable society. It is also helpful to those who carry out research and development regarding new products and services at companies. The author wrote this book hoping in particular that it provides the readers with meaningful hints to make good use of neural networks in fully practical applications. The book emphasizes basic ideas and ways of thinking. Why do we need to consider neural networks that deal with complex numbers? What advantages do the complex-valued neural networks have? What is the origin of the advantages? In what areas do they develop principal applications? This book answers these questions by describing details and examples, which will inspire the readers with new ideas.

Principal Component Neural Networks

Principal Component Neural Networks PDF Author: K. I. Diamantaras
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
Systematically explores the relationship between principal component analysis (PCA) and neural networks. Provides a synergistic examination of the mathematical, algorithmic, application and architectural aspects of principal component neural networks. Using a unified formulation, the authors present neural models performing PCA from the Hebbian learning rule and those which use least squares learning rules such as back-propagation. Examines the principles of biological perceptual systems to explain how the brain works. Every chapter contains a selected list of applications examples from diverse areas.