Author: Ching-Li Chai
Publisher: American Mathematical Soc.
ISBN: 1470410141
Category : Mathematics
Languages : en
Pages : 402
Book Description
Abelian varieties with complex multiplication lie at the origins of class field theory, and they play a central role in the contemporary theory of Shimura varieties. They are special in characteristic 0 and ubiquitous over finite fields. This book explores the relationship between such abelian varieties over finite fields and over arithmetically interesting fields of characteristic 0 via the study of several natural CM lifting problems which had previously been solved only in special cases. In addition to giving complete solutions to such questions, the authors provide numerous examples to illustrate the general theory and present a detailed treatment of many fundamental results and concepts in the arithmetic of abelian varieties, such as the Main Theorem of Complex Multiplication and its generalizations, the finer aspects of Tate's work on abelian varieties over finite fields, and deformation theory. This book provides an ideal illustration of how modern techniques in arithmetic geometry (such as descent theory, crystalline methods, and group schemes) can be fruitfully combined with class field theory to answer concrete questions about abelian varieties. It will be a useful reference for researchers and advanced graduate students at the interface of number theory and algebraic geometry.
Complex Multiplication and Lifting Problems
Author: Ching-Li Chai
Publisher: American Mathematical Soc.
ISBN: 1470410141
Category : Mathematics
Languages : en
Pages : 402
Book Description
Abelian varieties with complex multiplication lie at the origins of class field theory, and they play a central role in the contemporary theory of Shimura varieties. They are special in characteristic 0 and ubiquitous over finite fields. This book explores the relationship between such abelian varieties over finite fields and over arithmetically interesting fields of characteristic 0 via the study of several natural CM lifting problems which had previously been solved only in special cases. In addition to giving complete solutions to such questions, the authors provide numerous examples to illustrate the general theory and present a detailed treatment of many fundamental results and concepts in the arithmetic of abelian varieties, such as the Main Theorem of Complex Multiplication and its generalizations, the finer aspects of Tate's work on abelian varieties over finite fields, and deformation theory. This book provides an ideal illustration of how modern techniques in arithmetic geometry (such as descent theory, crystalline methods, and group schemes) can be fruitfully combined with class field theory to answer concrete questions about abelian varieties. It will be a useful reference for researchers and advanced graduate students at the interface of number theory and algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 1470410141
Category : Mathematics
Languages : en
Pages : 402
Book Description
Abelian varieties with complex multiplication lie at the origins of class field theory, and they play a central role in the contemporary theory of Shimura varieties. They are special in characteristic 0 and ubiquitous over finite fields. This book explores the relationship between such abelian varieties over finite fields and over arithmetically interesting fields of characteristic 0 via the study of several natural CM lifting problems which had previously been solved only in special cases. In addition to giving complete solutions to such questions, the authors provide numerous examples to illustrate the general theory and present a detailed treatment of many fundamental results and concepts in the arithmetic of abelian varieties, such as the Main Theorem of Complex Multiplication and its generalizations, the finer aspects of Tate's work on abelian varieties over finite fields, and deformation theory. This book provides an ideal illustration of how modern techniques in arithmetic geometry (such as descent theory, crystalline methods, and group schemes) can be fruitfully combined with class field theory to answer concrete questions about abelian varieties. It will be a useful reference for researchers and advanced graduate students at the interface of number theory and algebraic geometry.
Foundations of Arithmetic Differential Geometry
Author: Alexandru Buium
Publisher: American Mathematical Society
ISBN: 1470475774
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Publisher: American Mathematical Society
ISBN: 1470475774
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Complex Abelian Varieties
Author: Christina Birkenhake
Publisher: Springer Science & Business Media
ISBN: 3662063077
Category : Mathematics
Languages : en
Pages : 635
Book Description
This book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ". . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.
Publisher: Springer Science & Business Media
ISBN: 3662063077
Category : Mathematics
Languages : en
Pages : 635
Book Description
This book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ". . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.
The Ball and Some Hilbert Problems
Author: Rolf-Peter Holzapfel
Publisher: Birkhäuser
ISBN: 3034890516
Category : Mathematics
Languages : en
Pages : 162
Book Description
As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) " . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field". This message can be found in the 12-th problem "Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality" standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
Publisher: Birkhäuser
ISBN: 3034890516
Category : Mathematics
Languages : en
Pages : 162
Book Description
As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) " . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field". This message can be found in the 12-th problem "Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality" standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
Linear and Complex Analysis Problem Book 3
Author: Victor P. Havin
Publisher: Springer
ISBN: 3540483675
Category : Mathematics
Languages : en
Pages : 517
Book Description
The 2-volume book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and methodological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!
Publisher: Springer
ISBN: 3540483675
Category : Mathematics
Languages : en
Pages : 517
Book Description
The 2-volume book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and methodological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!
Fundamentals of Fluid-Solid Interactions
Author: Xiaodong (Sheldon) Wang
Publisher: Elsevier
ISBN: 0080559700
Category : Science
Languages : en
Pages : 587
Book Description
This book focuses on the computational and theoretical approaches to the coupling of fluid mechanics and solids mechanics. In particular, nonlinear dynamical systems are introduced to the handling of complex fluid-solid interaction systems, For the past few decades, many terminologies have been introduced to this field, namely, flow-induced vibration, aeroelasticity, hydroelasticity, fluid-structure interaction, fluid-solid interaction, and more recently multi-physics problems. Moreover, engineering applications are distributed within different disciplines, such as nuclear, civil, aerospace, ocean, chemical, electrical, and mechanical engineering. Regrettably, while each particular subject is by itself very extensive, it has been difficult for a single book to cover in a reasonable depth and in the mean time to connect various topics. In light of the current multidisciplinary research need in nanotechnology and bioengineering, there is an urgent need for books to provide such a linkage and to lay a foundation for more specialized fields. - Interdisciplinary across all types of engineering - Comprehensive study of fluid-solid interaction - Discusses complex system dynamics derived from interactive systems - Provides mathematic modeling of biological systems
Publisher: Elsevier
ISBN: 0080559700
Category : Science
Languages : en
Pages : 587
Book Description
This book focuses on the computational and theoretical approaches to the coupling of fluid mechanics and solids mechanics. In particular, nonlinear dynamical systems are introduced to the handling of complex fluid-solid interaction systems, For the past few decades, many terminologies have been introduced to this field, namely, flow-induced vibration, aeroelasticity, hydroelasticity, fluid-structure interaction, fluid-solid interaction, and more recently multi-physics problems. Moreover, engineering applications are distributed within different disciplines, such as nuclear, civil, aerospace, ocean, chemical, electrical, and mechanical engineering. Regrettably, while each particular subject is by itself very extensive, it has been difficult for a single book to cover in a reasonable depth and in the mean time to connect various topics. In light of the current multidisciplinary research need in nanotechnology and bioengineering, there is an urgent need for books to provide such a linkage and to lay a foundation for more specialized fields. - Interdisciplinary across all types of engineering - Comprehensive study of fluid-solid interaction - Discusses complex system dynamics derived from interactive systems - Provides mathematic modeling of biological systems
Arithmetic and Geometry
Author: Gisbert Wüstholz
Publisher: Princeton University Press
ISBN: 0691193789
Category : Mathematics
Languages : en
Pages : 186
Book Description
"Lectures by outstanding scholars on progress made in the past ten years in the most progressive areas of arithmetic and geometry - primarily arithmetic geometry"--
Publisher: Princeton University Press
ISBN: 0691193789
Category : Mathematics
Languages : en
Pages : 186
Book Description
"Lectures by outstanding scholars on progress made in the past ten years in the most progressive areas of arithmetic and geometry - primarily arithmetic geometry"--
Higher Ramanujan Equations and Periods of Abelian Varieties
Author: Tiago J. Fonseca
Publisher: American Mathematical Society
ISBN: 147046019X
Category : Mathematics
Languages : en
Pages : 158
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 147046019X
Category : Mathematics
Languages : en
Pages : 158
Book Description
View the abstract.
Sage for Undergraduates
Author: Gregory V. Bard
Publisher: American Mathematical Society
ISBN: 1470461552
Category : Mathematics
Languages : en
Pages : 158
Book Description
As the open-source and free alternative to expensive software like Maple™, Mathematica®, and MATLAB®, Sage offers anyone with a web browser the ability to use cutting-edge mathematical software and share the results with others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students during Calculus II, Multivariate Calculus, Differential Equations, Linear Algebra, Math Modeling, or Operations Research. This book assumes no background in programming, but the reader who finishes the book will have learned about 60 percent of a first semester computer science course, including much of the Python programming language. The audience is not only math majors, but also physics, engineering, environmental science, finance, chemistry, economics, data science, and computer science majors. Many of the book's examples are drawn from those fields. Filled with “challenges” for the students to test their progress, the book is also ideal for self-study. What's New in the Second Edition: In 2019, Sage transitioned from Python 2 to Python 3, which changed the syntax in several significant ways, including for the print command. All the examples in this book have been rewritten to be compatible with Python 3. Moreover, every code block longer than four lines has been placed in an archive on the book's website http://www.sage-for-undergraduates.org that is maintained by the author, so that the students won't have to retype the code! Other additions include… The number of “challenges” for the students to test their own progress in learning Sage has roughly doubled, which will be a great boon for self-study.There's approximately 150 pages of new content, including: New projects on Leontief Input-Output Analysis and on Environmental ScienceNew sections on Complex Numbers and Complex Analysis, on SageTex, and on solving problems via Monte-Carlo Simulations.The first three sections of Chapter 1 have been completely rewritten to give absolute beginners a smoother transition into Sage.
Publisher: American Mathematical Society
ISBN: 1470461552
Category : Mathematics
Languages : en
Pages : 158
Book Description
As the open-source and free alternative to expensive software like Maple™, Mathematica®, and MATLAB®, Sage offers anyone with a web browser the ability to use cutting-edge mathematical software and share the results with others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students during Calculus II, Multivariate Calculus, Differential Equations, Linear Algebra, Math Modeling, or Operations Research. This book assumes no background in programming, but the reader who finishes the book will have learned about 60 percent of a first semester computer science course, including much of the Python programming language. The audience is not only math majors, but also physics, engineering, environmental science, finance, chemistry, economics, data science, and computer science majors. Many of the book's examples are drawn from those fields. Filled with “challenges” for the students to test their progress, the book is also ideal for self-study. What's New in the Second Edition: In 2019, Sage transitioned from Python 2 to Python 3, which changed the syntax in several significant ways, including for the print command. All the examples in this book have been rewritten to be compatible with Python 3. Moreover, every code block longer than four lines has been placed in an archive on the book's website http://www.sage-for-undergraduates.org that is maintained by the author, so that the students won't have to retype the code! Other additions include… The number of “challenges” for the students to test their own progress in learning Sage has roughly doubled, which will be a great boon for self-study.There's approximately 150 pages of new content, including: New projects on Leontief Input-Output Analysis and on Environmental ScienceNew sections on Complex Numbers and Complex Analysis, on SageTex, and on solving problems via Monte-Carlo Simulations.The first three sections of Chapter 1 have been completely rewritten to give absolute beginners a smoother transition into Sage.
Quaestiones Mathematicae
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 594
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 594
Book Description