Commercializing Light-duty Plug-in/plug-out Hydrogen-fuel-cell Vehicles

Commercializing Light-duty Plug-in/plug-out Hydrogen-fuel-cell Vehicles PDF Author: Brett David Williams
Publisher:
ISBN:
Category :
Languages : en
Pages : 562

Get Book Here

Book Description

Commercializing Light-duty Plug-in/plug-out Hydrogen-fuel-cell Vehicles

Commercializing Light-duty Plug-in/plug-out Hydrogen-fuel-cell Vehicles PDF Author: Brett David Williams
Publisher:
ISBN:
Category :
Languages : en
Pages : 562

Get Book Here

Book Description


Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV)

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV) PDF Author: David Wood
Publisher: SAE International
ISBN: 0768083001
Category : Technology & Engineering
Languages : en
Pages : 198

Get Book Here

Book Description
Alternative propulsion technologies are becoming increasingly important with the rise of stricter regulations for vehicle efficiency, emission regulations, and concerns over the sustainability of crude oil supplies. The fuel cell is a critical component of alternative propulsion systems, and as such has many aspects to consider in its design. Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range of 300-400 miles, and fast refueling times; two major advantages over battery electric vehicles (BEVs). FCEVs face several remaining major challenges in order to achieve widespread and rapid commercialization. Many of the challenges, especially those from an FCEV system and subsystem cost and performance perspective are addressed in this book. Chapter topics include: • impact of FCEV commercialization • ways to address barriers to the market introduction of alternative vehicles • new hydrogen infrastructure cost comparisons • onboard chemical hydride storage • optimization of a fuel cell hybrid vehicle powertrain design

Transitions to Alternative Transportation Technologies

Transitions to Alternative Transportation Technologies PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309134366
Category : Science
Languages : en
Pages : 141

Get Book Here

Book Description
Hydrogen fuel cell vehicles (HFCVs) could alleviate the nation's dependence on oil and reduce U.S. emissions of carbon dioxide, the major greenhouse gas. Industry-and government-sponsored research programs have made very impressive technical progress over the past several years, and several companies are currently introducing pre-commercial vehicles and hydrogen fueling stations in limited markets. However, to achieve wide hydrogen vehicle penetration, further technological advances are required for commercial viability, and vehicle manufacturer and hydrogen supplier activities must be coordinated. In particular, costs must be reduced, new automotive manufacturing technologies commercialized, and adequate supplies of hydrogen produced and made available to motorists. These efforts will require considerable resources, especially federal and private sector funding. This book estimates the resources that will be needed to bring HFCVs to the point of competitive self-sustainability in the marketplace. It also estimates the impact on oil consumption and carbon dioxide emissions as HFCVs become a large fraction of the light-duty vehicle fleet.

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV)

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV) PDF Author: David Wood
Publisher: SAE International
ISBN: 0768082560
Category : Technology & Engineering
Languages : en
Pages : 198

Get Book Here

Book Description
Alternative propulsion technologies are becoming increasingly important with the rise of stricter regulations for vehicle efficiency, emission regulations, and concerns over the sustainability of crude oil supplies. The fuel cell is a critical component of alternative propulsion systems, and as such has many aspects to consider in its design. Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range of 300-400 miles, and fast refueling times; two major advantages over battery electric vehicles (BEVs). FCEVs face several remaining major challenges in order to achieve widespread and rapid commercialization. Many of the challenges, especially those from an FCEV system and subsystem cost and performance perspective are addressed in this book. Chapter topics include: • impact of FCEV commercialization • ways to address barriers to the market introduction of alternative vehicles • new hydrogen infrastructure cost comparisons • onboard chemical hydride storage • optimization of a fuel cell hybrid vehicle powertrain design

Transitions to Alternative Transportation Technologiesâ¬"Plug-in Hybrid Electric Vehicles

Transitions to Alternative Transportation Technologies⬠Author: National Research Council
Publisher: National Academies Press
ISBN: 0309148502
Category : Science
Languages : en
Pages : 70

Get Book Here

Book Description
The nation has compelling reasons to reduce its consumption of oil and emissions of carbon dioxide. Plug-in hybrid electric vehicles (PHEVs) promise to contribute to both goals by allowing some miles to be driven on electricity drawn from the grid, with an internal combustion engine that kicks in when the batteries are discharged. However, while battery technology has made great strides in recent years, batteries are still very expensive. Transitions to Alternative Transportation Technologies-Plug-in Hybrid Electric Vehicles builds on a 2008 National Research Council report on hydrogen fuel cell vehicles. The present volume reviews the current and projected technology status of PHEVs; considers the factors that will affect how rapidly PHEVs could enter the marketplace, including the interface with the electric transmission and distribution system; determines a maximum practical penetration rate for PHEVs consistent with the time frame and factors considered in the 2008 Hydrogen report; and incorporates PHEVs into the models used in the hydrogen study to estimate the costs and impacts on petroleum consumption and carbon dioxide emissions.

Impacting Rapid Hydrogen Fuel Cell Electric Vehicle (FCEV) Commercialization

Impacting Rapid Hydrogen Fuel Cell Electric Vehicle (FCEV) Commercialization PDF Author: David L. Wood
Publisher:
ISBN: 9780768083026
Category : Hydrogen as fuel
Languages : en
Pages :

Get Book Here

Book Description
Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range and fast refueling times. FCEVs face several remaining challenges in order to achieve widespread commercialisation. Many of the challenges are addressed in this book.

Transitions to Alternative Transportation Technologiesa-"Plug-In Hybrid Electric Vehicles

Transitions to Alternative Transportation Technologiesa- Author: Committee on Assessment of Resource Needs for Fuel Cell and Hydrogen Technologies
Publisher:
ISBN: 9780309384605
Category :
Languages : en
Pages : 70

Get Book Here

Book Description
The nation has compelling reasons to reduce its consumption of oil and emissions of carbon dioxide. Plug-in hybrid electric vehicles (PHEVs) promise to contribute to both goals by allowing some miles to be driven on electricity drawn from the grid, with an internal combustion engine that kicks in when the batteries are discharged. However, while battery technology has made great strides in recent years, batteries are still very expensive. "Transitions to Alternative Transportation Technologies--Plug-in Hybrid Electric Vehicles" builds on a 2008 National Research Council report on hydrogen fuel cell vehicles. The present volume reviews the current and projected technology status of PHEVs; considers the factors that will affect how rapidly PHEVs could enter the marketplace, including the interface with the electric transmission and distribution system; determines a maximum practical penetration rate for PHEVs consistent with the time frame and factors considered in the 2008 Hydrogen report; and incorporates PHEVs into the models used in the hydrogen study to estimate the costs and impacts on petroleum consumption and carbon dioxide emissions.

Hydrogen Energy and Vehicle Systems

Hydrogen Energy and Vehicle Systems PDF Author: Scott E. Grasman
Publisher: CRC Press
ISBN: 143982682X
Category : Science
Languages : en
Pages : 366

Get Book Here

Book Description
With contributions from noted laboratory scientists, professors, and engineers, Hydrogen Energy and Vehicle Systems presents a new comprehensive approach for applying hydrogen-based technologies to the transportation and electric power generation sectors. It shows how these technologies can improve the efficiency and reliability of energy and trans

Review of the Research Program of the FreedomCAR and Fuel Partnership

Review of the Research Program of the FreedomCAR and Fuel Partnership PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309177146
Category : Transportation
Languages : en
Pages : 229

Get Book Here

Book Description
The public-private partnership to develop vehicles that require less petroleum-based fuel and emit fewer greenhouse gases should continue to include fuel cells and other hydrogen technologies in its research and development portfolio. The third volume in the FreedomCAR series states that, although the partnership's recent shift of focus toward technologies that could be ready for use in the nearer term-such as advanced combustion engines and plug-in electric vehicles-is warranted, R&D on hydrogen and fuel cells is also needed given the high costs and challenges that many of the technologies must overcome before widespread use. The FreedomCAR (Cooperative Automotive Research) and Fuel Partnership is a research collaboration among the U.S. Department of Energy, the United States Council for Automotive Research - whose members are the Detroit automakers-five major energy companies, and two electric utility companies. The partnership seeks to advance the technologies essential for components and infrastructure for a full range of affordable, clean, energy efficient cars and light trucks. Until recently, the program primarily focused on developing technologies that would allow U.S. automakers to make production and marketing decisions by 2015 on hydrogen fuel cell-powered vehicles. These vehicles have the potential to be much more energy-efficient than conventional gasoline-powered vehicles, produce no harmful tailpipe emissions, and significantly reduce petroleum use. In 2009, the partnership changed direction and stepped up efforts to advance, in the shorter term, technologies for reducing petroleum use in combustion engines, including those using biofuels, as well as batteries that could be used in plug-in hybrid-electric or all electric vehicles.

Review of the Research Program of the U.S. DRIVE Partnership

Review of the Research Program of the U.S. DRIVE Partnership PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309268311
Category : Science
Languages : en
Pages : 201

Get Book Here

Book Description
Review of the Research Program of the U.S. DRIVE Partnership: Fourth Report follows on three previous NRC reviews of the FreedomCAR and Fuel Partnership, which was the predecessor of the U.S. DRIVE Partnership (NRC, 2005, 2008a, 2010). The U.S. DRIVE (Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability) vision, according to the charter of the Partnership, is this: American consumers have a broad range of affordable personal transportation choices that reduce petroleum consumption and significantly reduce harmful emissions from the transportation sector. Its mission is as follows: accelerate the development of pre-competitive and innovative technologies to enable a full range of efficient and clean advanced light-duty vehicles (LDVs), as well as related energy infrastructure. The Partnership focuses on precompetitive research and development (R&D) that can help to accelerate the emergence of advanced technologies to be commercialization-feasible. The guidance for the work of the U.S. DRIVE Partnership as well as the priority setting and targets for needed research are provided by joint industry/government technical teams. This structure has been demonstrated to be an effective means of identifying high-priority, long-term precompetitive research needs for each technology with which the Partnership is involved. Technical areas in which research and development as well as technology validation programs have been pursued include the following: internal combustion engines (ICEs) potentially operating on conventional and various alternative fuels, automotive fuel cell power systems, hydrogen storage systems (especially onboard vehicles), batteries and other forms of electrochemical energy storage, electric propulsion systems, hydrogen production and delivery, and materials leading to vehicle weight reductions.