Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics PDF Author: A. Micali
Publisher: Springer Science & Business Media
ISBN: 9401580901
Category : Mathematics
Languages : en
Pages : 509

Get Book Here

Book Description
This volume contains selected papers presented at the Second Workshop on Clifford Algebras and their Applications in Mathematical Physics. These papers range from various algebraic and analytic aspects of Clifford algebras to applications in, for example, gauge fields, relativity theory, supersymmetry and supergravity, and condensed phase physics. Included is a biography and list of publications of Mário Schenberg, who, next to Marcel Riesz, has made valuable contributions to these topics. This volume will be of interest to mathematicians working in the fields of algebra, geometry or special functions, to physicists working on quantum mechanics or supersymmetry, and to historians of mathematical physics.

Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics PDF Author: A. Micali
Publisher: Springer Science & Business Media
ISBN: 9401580901
Category : Mathematics
Languages : en
Pages : 509

Get Book Here

Book Description
This volume contains selected papers presented at the Second Workshop on Clifford Algebras and their Applications in Mathematical Physics. These papers range from various algebraic and analytic aspects of Clifford algebras to applications in, for example, gauge fields, relativity theory, supersymmetry and supergravity, and condensed phase physics. Included is a biography and list of publications of Mário Schenberg, who, next to Marcel Riesz, has made valuable contributions to these topics. This volume will be of interest to mathematicians working in the fields of algebra, geometry or special functions, to physicists working on quantum mechanics or supersymmetry, and to historians of mathematical physics.

Clifford Algebras and Their Applications in Mathematical Physics

Clifford Algebras and Their Applications in Mathematical Physics PDF Author: J.S.R. Chisholm
Publisher: Springer Science & Business Media
ISBN: 9400947283
Category : Mathematics
Languages : en
Pages : 589

Get Book Here

Book Description
William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.

Clifford Algebras

Clifford Algebras PDF Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 1461220440
Category : Mathematics
Languages : en
Pages : 635

Get Book Here

Book Description
The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.

Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics PDF Author: Rafał Abłamowicz
Publisher: Springer Science & Business Media
ISBN: 9780817641825
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.

Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics PDF Author: A. Micali
Publisher: Springer Science & Business Media
ISBN: 9780792316237
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
Proceedings of the Second Workshop held at Montpellier, France, 1989

Clifford Algebra to Geometric Calculus

Clifford Algebra to Geometric Calculus PDF Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Clifford Analysis and Its Applications

Clifford Analysis and Its Applications PDF Author: F. Brackx
Publisher: Springer Science & Business Media
ISBN: 9780792370444
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.

Clifford Algebras and Their Applications in Mathematical Physics

Clifford Algebras and Their Applications in Mathematical Physics PDF Author: John Stephen roy Chisholm
Publisher: Springer
ISBN: 9027723087
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.

An Introduction to Clifford Algebras and Spinors

An Introduction to Clifford Algebras and Spinors PDF Author: Jayme Vaz Jr.
Publisher: Oxford University Press
ISBN: 0198782926
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.

Quaternions, Clifford Algebras and Relativistic Physics

Quaternions, Clifford Algebras and Relativistic Physics PDF Author: Patrick R. Girard
Publisher: Springer Science & Business Media
ISBN: 3764377917
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.