Author: Hari G. Garg
Publisher: Elsevier
ISBN: 0080472222
Category : Science
Languages : en
Pages : 625
Book Description
It was probably the French chemist Portes, who first reported in 1880 that the mucin in the vitreous body, which he named hyalomucine, behaved differently from other mucoids in cornea and cartilage. Fifty four years later Karl Meyer isolated a new polysaccharide from the vitreous, which he named hyaluronic acid. Today its official name is hyaluronan, and modern-day research on this polysaccharide continues to grow. Expertly written by leading scientists in the field, this book provides readers with a broad, yet detailed review of the chemistry of hyaluronan, and the role it plays in human biology and pathology. Twenty-seven chapters present a sequence leading from the chemistry and biochemistry of hyaluronan, followed by its role in various pathological conditions, to modified hylauronans as potential therapeutic agents and finally to the functional, structural and biological properties of hyaluronidases. Chemistry and Biology of Hyaluronan covers the many interesting facets of this fascinating molecule, and all chapters are intended to reach the wider research community. - Comprehensive look at the chemistry and biology of hyaluronans - Essential to Chemists, Biochemists and Medical researchers - Broad yet detailed review of this rapidly growing research area
Chemistry and Biology of Hyaluronan
Author: Hari G. Garg
Publisher: Elsevier
ISBN: 0080472222
Category : Science
Languages : en
Pages : 625
Book Description
It was probably the French chemist Portes, who first reported in 1880 that the mucin in the vitreous body, which he named hyalomucine, behaved differently from other mucoids in cornea and cartilage. Fifty four years later Karl Meyer isolated a new polysaccharide from the vitreous, which he named hyaluronic acid. Today its official name is hyaluronan, and modern-day research on this polysaccharide continues to grow. Expertly written by leading scientists in the field, this book provides readers with a broad, yet detailed review of the chemistry of hyaluronan, and the role it plays in human biology and pathology. Twenty-seven chapters present a sequence leading from the chemistry and biochemistry of hyaluronan, followed by its role in various pathological conditions, to modified hylauronans as potential therapeutic agents and finally to the functional, structural and biological properties of hyaluronidases. Chemistry and Biology of Hyaluronan covers the many interesting facets of this fascinating molecule, and all chapters are intended to reach the wider research community. - Comprehensive look at the chemistry and biology of hyaluronans - Essential to Chemists, Biochemists and Medical researchers - Broad yet detailed review of this rapidly growing research area
Publisher: Elsevier
ISBN: 0080472222
Category : Science
Languages : en
Pages : 625
Book Description
It was probably the French chemist Portes, who first reported in 1880 that the mucin in the vitreous body, which he named hyalomucine, behaved differently from other mucoids in cornea and cartilage. Fifty four years later Karl Meyer isolated a new polysaccharide from the vitreous, which he named hyaluronic acid. Today its official name is hyaluronan, and modern-day research on this polysaccharide continues to grow. Expertly written by leading scientists in the field, this book provides readers with a broad, yet detailed review of the chemistry of hyaluronan, and the role it plays in human biology and pathology. Twenty-seven chapters present a sequence leading from the chemistry and biochemistry of hyaluronan, followed by its role in various pathological conditions, to modified hylauronans as potential therapeutic agents and finally to the functional, structural and biological properties of hyaluronidases. Chemistry and Biology of Hyaluronan covers the many interesting facets of this fascinating molecule, and all chapters are intended to reach the wider research community. - Comprehensive look at the chemistry and biology of hyaluronans - Essential to Chemists, Biochemists and Medical researchers - Broad yet detailed review of this rapidly growing research area
The Chemistry, Biology and Medical Applications of Hyaluronan and Its Derivatives
Author: T. C. Laurent
Publisher: Portland Press, London
ISBN:
Category : Medical
Languages : en
Pages : 368
Book Description
The aim of this book is to collect within one volume information on hyaluronan. This polysaccharide has received rapid attention for two reasons: it has important regulative functions within cell biology; and it has become a commercially important product because of its use in ophthalmic surgery and treatment of joint diease. A number of other practical applications are also discussed. The book covers various aspects of hyaluronan from the structure and chemistry of the polymer to its metabolism, cell biological interactions, behaviour in pathological processes, and potentially new medical applications.
Publisher: Portland Press, London
ISBN:
Category : Medical
Languages : en
Pages : 368
Book Description
The aim of this book is to collect within one volume information on hyaluronan. This polysaccharide has received rapid attention for two reasons: it has important regulative functions within cell biology; and it has become a commercially important product because of its use in ophthalmic surgery and treatment of joint diease. A number of other practical applications are also discussed. The book covers various aspects of hyaluronan from the structure and chemistry of the polymer to its metabolism, cell biological interactions, behaviour in pathological processes, and potentially new medical applications.
Chemistry and Biology of Heparin and Heparan Sulfate
Author: Hari G. Garg
Publisher: Elsevier
ISBN: 0080529054
Category : Science
Languages : en
Pages : 793
Book Description
The chemistry, biochemistry and pharmacology of heparin and heparan sulfate have been and continue to be a major scientific undertaking - heparin and its derivative remain important drugs in clinical practice. Chemistry and Biology of Heparin and Heparan Sulfate provides readers with an insight into the chemistry, biology and clinical applications of heparin and heparan sulfate and examines their function in various physiological and pathological conditions. Providing a wealth of useful information, no other tome covers the diversity of topics in the field. Students, doctors, chemists, biochemists, and research scientists will find this book an invaluable source for updating their current knowledge of developments in this area. - Comprehensively reviews all aspects of heparin and heparan sulfate research - Uniquely describes the chemistry, biology and clinical application of heparins and heparan sulfates in one work - Provides an invaluable source of knowledge of current developments for chemists, biochemists, medical doctors, researchers, students and practitioners
Publisher: Elsevier
ISBN: 0080529054
Category : Science
Languages : en
Pages : 793
Book Description
The chemistry, biochemistry and pharmacology of heparin and heparan sulfate have been and continue to be a major scientific undertaking - heparin and its derivative remain important drugs in clinical practice. Chemistry and Biology of Heparin and Heparan Sulfate provides readers with an insight into the chemistry, biology and clinical applications of heparin and heparan sulfate and examines their function in various physiological and pathological conditions. Providing a wealth of useful information, no other tome covers the diversity of topics in the field. Students, doctors, chemists, biochemists, and research scientists will find this book an invaluable source for updating their current knowledge of developments in this area. - Comprehensively reviews all aspects of heparin and heparan sulfate research - Uniquely describes the chemistry, biology and clinical application of heparins and heparan sulfates in one work - Provides an invaluable source of knowledge of current developments for chemists, biochemists, medical doctors, researchers, students and practitioners
Carbohydrate Chemistry, Biology and Medical Applications
Author: Hari G. Garg
Publisher: Elsevier
ISBN: 0080558143
Category : Science
Languages : en
Pages : 431
Book Description
The finding by Emil Fischer that glucose and fructose on treatment with phenylhydrazine gave the identical osazone led him to the elucidation of stereochemistry of carbohydrates. Since then, progress in the field of carbohydrates has been amazing with the unraveling their basic structure, biosynthesis, immunology, functions, and clinical uses, for pure carbohydrates and for protein-linked carbohydrates (glycoproteins and proteoglycans). The chapters in Carbohydrate Chemistry, Biology and Medical Applications present a logical sequence leading from the chemistry and biochemistry of carbohydrates, followed by their role in various pathological conditions, to carbohydrates as potential therapeutic and diagnostic agents. This book offers a detailed panoramic review of the chemistry and biology of carbohydrates for chemists, biologists and health professionals. Each chapter is authored by contributors expert in the particular area of research. - Explains how carbohydrates are important to life - Details the chemistry, biology and medical aspects of carbohydrates - Interdisciplinary and international team of authors
Publisher: Elsevier
ISBN: 0080558143
Category : Science
Languages : en
Pages : 431
Book Description
The finding by Emil Fischer that glucose and fructose on treatment with phenylhydrazine gave the identical osazone led him to the elucidation of stereochemistry of carbohydrates. Since then, progress in the field of carbohydrates has been amazing with the unraveling their basic structure, biosynthesis, immunology, functions, and clinical uses, for pure carbohydrates and for protein-linked carbohydrates (glycoproteins and proteoglycans). The chapters in Carbohydrate Chemistry, Biology and Medical Applications present a logical sequence leading from the chemistry and biochemistry of carbohydrates, followed by their role in various pathological conditions, to carbohydrates as potential therapeutic and diagnostic agents. This book offers a detailed panoramic review of the chemistry and biology of carbohydrates for chemists, biologists and health professionals. Each chapter is authored by contributors expert in the particular area of research. - Explains how carbohydrates are important to life - Details the chemistry, biology and medical aspects of carbohydrates - Interdisciplinary and international team of authors
Hyaluronan in Cancer Biology
Author: Robert Stern
Publisher: Academic Press
ISBN: 0080921086
Category : Medical
Languages : en
Pages : 467
Book Description
Hyaluronan biology is being recognized as an important regulator of cancer progression. Paradoxically, both hyaluronan (HA) and hyaluronidases, the enzymes that eliminate HA, have also been correlated with cancer progression. Hyaluronan, a long-chain polymer of the extracellular matrix, opens up tissue spaces through which cancer cells move and metastasize. It also confers motility upon cells through interactions of cell-surface HA with the cytoskeleton. Embryonic cells in the process of movement and proliferation use the same strategy. It is an example of how cancer cells have commandeered normal cellular processes for their own survival and spread. There are also parallels between cancer and wound healing, cancer occasionally being defined as a wound that does not heal. The growing body of literature regarding this topic has recently progressed from describing the association of hyaluronan and hyaluronidase expression associated with different cancers, to understanding the mechanisms that drive tumor cell activation, proliferation, drug resistance, etc. No one source, however, discusses hyaluronan synthesis and catabolism, as well as the factors that regulate the balance. This book will offer a comprehensive summary and cutting-edge insight into Hyaluronan biology, the role of the HA receptors, the hyaluronidase enzymes that degrade HA, as well as HA synthesis enzymes and their relationship to cancer. - Offers a comprehensive summary and cutting-edge insight into Hyaluronan biology, the role of the HA receptors, the hyaluronidase enzymes that degrade HA, as well as HA synthesis enzymes and their relationship to cancer - Chapters are written by the leading international authorities on this subject, from laboratories that focus on the investigation of hyaluronan in cancer initiation, progression, and dissemination - Focuses on understanding the mechanisms that drive tumor cell activation, proliferation, and drug resistance
Publisher: Academic Press
ISBN: 0080921086
Category : Medical
Languages : en
Pages : 467
Book Description
Hyaluronan biology is being recognized as an important regulator of cancer progression. Paradoxically, both hyaluronan (HA) and hyaluronidases, the enzymes that eliminate HA, have also been correlated with cancer progression. Hyaluronan, a long-chain polymer of the extracellular matrix, opens up tissue spaces through which cancer cells move and metastasize. It also confers motility upon cells through interactions of cell-surface HA with the cytoskeleton. Embryonic cells in the process of movement and proliferation use the same strategy. It is an example of how cancer cells have commandeered normal cellular processes for their own survival and spread. There are also parallels between cancer and wound healing, cancer occasionally being defined as a wound that does not heal. The growing body of literature regarding this topic has recently progressed from describing the association of hyaluronan and hyaluronidase expression associated with different cancers, to understanding the mechanisms that drive tumor cell activation, proliferation, drug resistance, etc. No one source, however, discusses hyaluronan synthesis and catabolism, as well as the factors that regulate the balance. This book will offer a comprehensive summary and cutting-edge insight into Hyaluronan biology, the role of the HA receptors, the hyaluronidase enzymes that degrade HA, as well as HA synthesis enzymes and their relationship to cancer. - Offers a comprehensive summary and cutting-edge insight into Hyaluronan biology, the role of the HA receptors, the hyaluronidase enzymes that degrade HA, as well as HA synthesis enzymes and their relationship to cancer - Chapters are written by the leading international authorities on this subject, from laboratories that focus on the investigation of hyaluronan in cancer initiation, progression, and dissemination - Focuses on understanding the mechanisms that drive tumor cell activation, proliferation, and drug resistance
The Biology of Hyaluronan
Author: David Evered
Publisher: John Wiley & Sons
ISBN: 0470513780
Category : Science
Languages : en
Pages : 308
Book Description
Presents state-of-the-art applications in hyaluronan research, from hyaluronan's physicochemical properties to its clinical role as a connective tissue marker and its surgical implications, particularly in ear, eye and orthopaedic surgery. Covers hyaluronan's synthesis and catabolism, its role in cells, its interactions with specific binding proteins, and its role in the embryonic nervous system.
Publisher: John Wiley & Sons
ISBN: 0470513780
Category : Science
Languages : en
Pages : 308
Book Description
Presents state-of-the-art applications in hyaluronan research, from hyaluronan's physicochemical properties to its clinical role as a connective tissue marker and its surgical implications, particularly in ear, eye and orthopaedic surgery. Covers hyaluronan's synthesis and catabolism, its role in cells, its interactions with specific binding proteins, and its role in the embryonic nervous system.
The Vitreous and Vitreoretinal Interface
Author: Charles L. Schepens
Publisher: Springer Science & Business Media
ISBN: 1475719019
Category : Medical
Languages : en
Pages : 400
Book Description
Ophthalmic researchers and clinicians alike increasingly are recognizing the importance of the vitreous body in the physiology, biochemistry, and pathology of the inner eye. The Vitreous and Vitreoretinal Interface, with contributions by vitreoretinal surgeons and laboratory eye researchers, presents the most up-to-date clinically relevant data. This book provides evidence of the vitreous body's significant role in preserving retinal homeostasis, as well as the close connection between vitreous traction and such conditions as retinal inflammation, retinal vascular occlusions, macular edema, proliferative diabetic retinopathy, and giant retinal tears. The particular vitreal changes that occur in aphakia, myopia, retinitis pigmentosa, and idiopathic giant retinal breaks, as well as recent advances in open-sky vitreous surgery and in the search for useful vitreous substitutes are discussed.
Publisher: Springer Science & Business Media
ISBN: 1475719019
Category : Medical
Languages : en
Pages : 400
Book Description
Ophthalmic researchers and clinicians alike increasingly are recognizing the importance of the vitreous body in the physiology, biochemistry, and pathology of the inner eye. The Vitreous and Vitreoretinal Interface, with contributions by vitreoretinal surgeons and laboratory eye researchers, presents the most up-to-date clinically relevant data. This book provides evidence of the vitreous body's significant role in preserving retinal homeostasis, as well as the close connection between vitreous traction and such conditions as retinal inflammation, retinal vascular occlusions, macular edema, proliferative diabetic retinopathy, and giant retinal tears. The particular vitreal changes that occur in aphakia, myopia, retinitis pigmentosa, and idiopathic giant retinal breaks, as well as recent advances in open-sky vitreous surgery and in the search for useful vitreous substitutes are discussed.
Renewable Resources for Functional Polymers and Biomaterials
Author: Peter Williams
Publisher: Royal Society of Chemistry
ISBN: 1782625844
Category : Science
Languages : en
Pages : 386
Book Description
This book details polysaccharides and other important biomacromolecules covering their source, production, structures, properties, and current and potential application in the fields of biotechnology and medicine. It includes a systematic discussion on the general strategies of isolation, separation and characterization of polysaccharides and proteins. Subsequent chapters are devoted to polysaccharides obtained from various sources, including botanical, algal, animal and microbial. In the area of botanical polysaccharides, separate chapters are devoted to the sources, structure, properties and medical applications of cellulose and its derivatives, starch and its derivatives, pectins, and exudate gums, notably gum arabic. Another chapter discusses the potential of hemicelluloses (xylans and xylan derivatives) as a new source of functional biopolymers for biomedical and industrial applications. The algal polysaccharide, alginate, has significant application in food, pharmaceuticals and the medical field, all of which are reviewed in a separate chapter. Polysaccharides of animal origin are included with separate chapters on the sources, production, biocompatibility, biodegradability and biomedical applications of chitin (chitosan) and hyaluronan. With the increasing knowledge and applications of genetic engineering there is also an introduction in the book to nucleic acid polymers, the genome research and genetic engineering. Proteins and protein conjugates are covered, with one chapter providing a general review of structural glycoproteins, fibronectin and laminin, together with their role in the promotion of cell adhesion in vascular grafts, implants and tissue engineering. Another chapter discusses general aspects of a number of industrial proteins, including casein, caseinates, whey protein, gluten and soy proteins, with emphasis on their medical applications, and with reference to the potential of bacterial proteins. Another natural polymer resource, microbial polyesters, although small compared with polysaccharides and proteins, is also gaining increasing interest in biomedical technology and other industrial sectors. One chapter, therefore, is devoted to microbial polyesters, with comprehensive coverage of their biosynthesis, properties, enzymic degradation and applications. By dealing with biopolymers at the molecular level, the book is aimed at the biomedical and wider materials science communities and provides an advanced overview of biopolymers at the graduate and postgraduate level. In addition it will appeal to both academic and industrial life scientists who are involved in research and development activities in the medical and biotechnology field.
Publisher: Royal Society of Chemistry
ISBN: 1782625844
Category : Science
Languages : en
Pages : 386
Book Description
This book details polysaccharides and other important biomacromolecules covering their source, production, structures, properties, and current and potential application in the fields of biotechnology and medicine. It includes a systematic discussion on the general strategies of isolation, separation and characterization of polysaccharides and proteins. Subsequent chapters are devoted to polysaccharides obtained from various sources, including botanical, algal, animal and microbial. In the area of botanical polysaccharides, separate chapters are devoted to the sources, structure, properties and medical applications of cellulose and its derivatives, starch and its derivatives, pectins, and exudate gums, notably gum arabic. Another chapter discusses the potential of hemicelluloses (xylans and xylan derivatives) as a new source of functional biopolymers for biomedical and industrial applications. The algal polysaccharide, alginate, has significant application in food, pharmaceuticals and the medical field, all of which are reviewed in a separate chapter. Polysaccharides of animal origin are included with separate chapters on the sources, production, biocompatibility, biodegradability and biomedical applications of chitin (chitosan) and hyaluronan. With the increasing knowledge and applications of genetic engineering there is also an introduction in the book to nucleic acid polymers, the genome research and genetic engineering. Proteins and protein conjugates are covered, with one chapter providing a general review of structural glycoproteins, fibronectin and laminin, together with their role in the promotion of cell adhesion in vascular grafts, implants and tissue engineering. Another chapter discusses general aspects of a number of industrial proteins, including casein, caseinates, whey protein, gluten and soy proteins, with emphasis on their medical applications, and with reference to the potential of bacterial proteins. Another natural polymer resource, microbial polyesters, although small compared with polysaccharides and proteins, is also gaining increasing interest in biomedical technology and other industrial sectors. One chapter, therefore, is devoted to microbial polyesters, with comprehensive coverage of their biosynthesis, properties, enzymic degradation and applications. By dealing with biopolymers at the molecular level, the book is aimed at the biomedical and wider materials science communities and provides an advanced overview of biopolymers at the graduate and postgraduate level. In addition it will appeal to both academic and industrial life scientists who are involved in research and development activities in the medical and biotechnology field.
Extracellular Sugar-Based Biopolymers Matrices
Author: Ephraim Cohen
Publisher: Springer
ISBN: 3030129195
Category : Science
Languages : en
Pages : 822
Book Description
The extracellular matrix (ECM) is an acellular three-dimensional network composed of proteins, glycoproteins, proteoglycans and exopolysaccharides. It primarily serves as a structural component in the tissues and organs of plants and animals, or forms biofilms in which bacterial cells are embedded. ECMs are highly dynamic structures that undergo continuous remodeling, and disruptions are frequently the result of pathological processes associated with severe diseases such as arteriosclerosis, neurodegenerative illness or cancer. In turn, bacterial biofilms are a source of concern for human health, as they are associated with resistance to antibiotics. Although exopolysaccharides are crucial for ECM formation and function, they have received considerably little attention to date. The respective chapters of this book comprehensively address such issues, and provide reviews on the structural, biochemical, molecular and biophysical properties of exopolysaccharides. These components are abundantly produced by virtually all taxa including bacteria, algae, plants, fungi, invertebrates and vertebrates. They include long unbranched homopolymers (cellulose, chitin/chitosan), linear copolymers (alginate, agarose), peptoglycans such as murein, heteropolymers like a variety of glycosaminoglycans (hyaluronan, dermatan, keratin, heparin, Pel), and branched heteropolymers such as pectin and hemicellulose. A separate chapter is dedicated to modern industrial and biomedical applications of exopolysaccharides and polysaccharide-based biocomposites. Their unique chemical, physical and mechanical properties have attracted considerable interest, inspired basic and applied research, and have already been harnessed to form structural biocomposite hybrids for tailor-made applications in regenerative medicine, bioengineering and biosensor design. Given its scope, this book provides a substantial source of basic and applied information for a wide range of scientists, as well as valuable textbook for graduate and advanced undergraduate students.
Publisher: Springer
ISBN: 3030129195
Category : Science
Languages : en
Pages : 822
Book Description
The extracellular matrix (ECM) is an acellular three-dimensional network composed of proteins, glycoproteins, proteoglycans and exopolysaccharides. It primarily serves as a structural component in the tissues and organs of plants and animals, or forms biofilms in which bacterial cells are embedded. ECMs are highly dynamic structures that undergo continuous remodeling, and disruptions are frequently the result of pathological processes associated with severe diseases such as arteriosclerosis, neurodegenerative illness or cancer. In turn, bacterial biofilms are a source of concern for human health, as they are associated with resistance to antibiotics. Although exopolysaccharides are crucial for ECM formation and function, they have received considerably little attention to date. The respective chapters of this book comprehensively address such issues, and provide reviews on the structural, biochemical, molecular and biophysical properties of exopolysaccharides. These components are abundantly produced by virtually all taxa including bacteria, algae, plants, fungi, invertebrates and vertebrates. They include long unbranched homopolymers (cellulose, chitin/chitosan), linear copolymers (alginate, agarose), peptoglycans such as murein, heteropolymers like a variety of glycosaminoglycans (hyaluronan, dermatan, keratin, heparin, Pel), and branched heteropolymers such as pectin and hemicellulose. A separate chapter is dedicated to modern industrial and biomedical applications of exopolysaccharides and polysaccharide-based biocomposites. Their unique chemical, physical and mechanical properties have attracted considerable interest, inspired basic and applied research, and have already been harnessed to form structural biocomposite hybrids for tailor-made applications in regenerative medicine, bioengineering and biosensor design. Given its scope, this book provides a substantial source of basic and applied information for a wide range of scientists, as well as valuable textbook for graduate and advanced undergraduate students.
Methods of Molecular Analysis in the Life Sciences
Author: Andreas Hofmann
Publisher: Cambridge University Press
ISBN: 1107044707
Category : Business & Economics
Languages : en
Pages : 229
Book Description
An accessible overview of the most popular and cutting-edge methods for studying the properties of molecules and their interactions.
Publisher: Cambridge University Press
ISBN: 1107044707
Category : Business & Economics
Languages : en
Pages : 229
Book Description
An accessible overview of the most popular and cutting-edge methods for studying the properties of molecules and their interactions.