Author: Peter Gray
Publisher: Oxford University Press on Demand
ISBN: 9780198558644
Category : Literary Criticism
Languages : en
Pages : 453
Book Description
Scientists in many fields are now expressing considerable interest in non-linearity and the ideas of oscillations and chaos. Chemical reactions provide perfect examples of these phenomena, as oscillating reactions, explosions, ignition, travelling waves, patterns, quasiperiodicity, and chaosare all features of chemical kinetics.Now available in paperback, this book introduces non-linear phenomena in chemical kinetics using simple model schemes. These models involve chemical feedback, such as chain branching, autocatalysis, and self-heating. The emphasis is on physical and pictorial representation, and on identifying thosegross features which are essential. The experimental conditions under which such behaviour will occur can be predicted using simple mathematical recipes, and these are also included.The first part of the book begins with a discussion of long-lived oscillations for autocatalytic or exothermic reactions in closed vessels. Stationary states, bistability, and oscillations in continuous flow reactors and diffusion cells are then considered. This is followed by chemical wavepropagation and by pattern selection and oscillations. Complex oscillations, quasiperiodicity, and chemical chaos, either forced or spontaneous, are introduced. Part 2 deals with real experimental systems, describing observed experimental behaviour and its interpretation in terms of the underlyingchemical mechanisms or simplified models. The Belousov-Zhabotinskii reactions is discussed in some detail as the most extensively studied system, and the behaviour of important gas phase reactions is presented.
Chemical Oscillations and Instabilities
Author: Peter Gray
Publisher: Oxford University Press on Demand
ISBN: 9780198558644
Category : Literary Criticism
Languages : en
Pages : 453
Book Description
Scientists in many fields are now expressing considerable interest in non-linearity and the ideas of oscillations and chaos. Chemical reactions provide perfect examples of these phenomena, as oscillating reactions, explosions, ignition, travelling waves, patterns, quasiperiodicity, and chaosare all features of chemical kinetics.Now available in paperback, this book introduces non-linear phenomena in chemical kinetics using simple model schemes. These models involve chemical feedback, such as chain branching, autocatalysis, and self-heating. The emphasis is on physical and pictorial representation, and on identifying thosegross features which are essential. The experimental conditions under which such behaviour will occur can be predicted using simple mathematical recipes, and these are also included.The first part of the book begins with a discussion of long-lived oscillations for autocatalytic or exothermic reactions in closed vessels. Stationary states, bistability, and oscillations in continuous flow reactors and diffusion cells are then considered. This is followed by chemical wavepropagation and by pattern selection and oscillations. Complex oscillations, quasiperiodicity, and chemical chaos, either forced or spontaneous, are introduced. Part 2 deals with real experimental systems, describing observed experimental behaviour and its interpretation in terms of the underlyingchemical mechanisms or simplified models. The Belousov-Zhabotinskii reactions is discussed in some detail as the most extensively studied system, and the behaviour of important gas phase reactions is presented.
Publisher: Oxford University Press on Demand
ISBN: 9780198558644
Category : Literary Criticism
Languages : en
Pages : 453
Book Description
Scientists in many fields are now expressing considerable interest in non-linearity and the ideas of oscillations and chaos. Chemical reactions provide perfect examples of these phenomena, as oscillating reactions, explosions, ignition, travelling waves, patterns, quasiperiodicity, and chaosare all features of chemical kinetics.Now available in paperback, this book introduces non-linear phenomena in chemical kinetics using simple model schemes. These models involve chemical feedback, such as chain branching, autocatalysis, and self-heating. The emphasis is on physical and pictorial representation, and on identifying thosegross features which are essential. The experimental conditions under which such behaviour will occur can be predicted using simple mathematical recipes, and these are also included.The first part of the book begins with a discussion of long-lived oscillations for autocatalytic or exothermic reactions in closed vessels. Stationary states, bistability, and oscillations in continuous flow reactors and diffusion cells are then considered. This is followed by chemical wavepropagation and by pattern selection and oscillations. Complex oscillations, quasiperiodicity, and chemical chaos, either forced or spontaneous, are introduced. Part 2 deals with real experimental systems, describing observed experimental behaviour and its interpretation in terms of the underlyingchemical mechanisms or simplified models. The Belousov-Zhabotinskii reactions is discussed in some detail as the most extensively studied system, and the behaviour of important gas phase reactions is presented.
Chemical Oscillations and Instabilities
Author: Peter Gray
Publisher:
ISBN: 9781383028614
Category : Nonlinear theories
Languages : en
Pages : 0
Book Description
Scientists in many fields are now expressing considerable interest in non-linearity and the ideas of oscillations and chaos. This book introduces non-linear phenomena in chemical kinetics using simple model schemes.
Publisher:
ISBN: 9781383028614
Category : Nonlinear theories
Languages : en
Pages : 0
Book Description
Scientists in many fields are now expressing considerable interest in non-linearity and the ideas of oscillations and chaos. This book introduces non-linear phenomena in chemical kinetics using simple model schemes.
Chemomechanical Instabilities in Responsive Materials
Author: Pierre Borckmans
Publisher: Springer
ISBN: 9048129931
Category : Science
Languages : en
Pages : 282
Book Description
The present volume includes most of the material of the invited lectures delivered at the NATO Advanced Study Institute “Morphogenesis through the interplay of nonlinear chemical instabilities and elastic active media” held from 2th to 14th July 2007 at the Institut d’Etudes Scientifiques de Cargèse (http://www.iesc.univ-corse.fr/), in Corsica (France). This traditional place to organize Summer Schools and Workshops in a well equipped secluded location at the border of the Mediterranean sea has, over many years now, earned an increasing deserved reputation. Non-linear dynamics of non equilibrium systems has worked its way into a great number of fields and plays a key role in the understanding of se- organization and emergence phenomena in domains as diverse as chemical reactors, laser physics, fluid dynamics, electronic devices and biological morphogenesis. In the latter case, the viscoelastic properties of tissues are also known to play a key role. The control and formulation of soft responsive or “smart” materials has been a fast growing field of material science, specially in the area of po- mer networks, due to their growing applications in bio-science, chemical sensors, intelligent microfluidic devices, ... . Nature is an important p- vider of active materials whether at the level of tissues or at that of s- cellular structures. As a consequence, the fundamental understanding of the physical mechanisms at play in responsive materials also shines light in the understanding of biological artefacts.
Publisher: Springer
ISBN: 9048129931
Category : Science
Languages : en
Pages : 282
Book Description
The present volume includes most of the material of the invited lectures delivered at the NATO Advanced Study Institute “Morphogenesis through the interplay of nonlinear chemical instabilities and elastic active media” held from 2th to 14th July 2007 at the Institut d’Etudes Scientifiques de Cargèse (http://www.iesc.univ-corse.fr/), in Corsica (France). This traditional place to organize Summer Schools and Workshops in a well equipped secluded location at the border of the Mediterranean sea has, over many years now, earned an increasing deserved reputation. Non-linear dynamics of non equilibrium systems has worked its way into a great number of fields and plays a key role in the understanding of se- organization and emergence phenomena in domains as diverse as chemical reactors, laser physics, fluid dynamics, electronic devices and biological morphogenesis. In the latter case, the viscoelastic properties of tissues are also known to play a key role. The control and formulation of soft responsive or “smart” materials has been a fast growing field of material science, specially in the area of po- mer networks, due to their growing applications in bio-science, chemical sensors, intelligent microfluidic devices, ... . Nature is an important p- vider of active materials whether at the level of tissues or at that of s- cellular structures. As a consequence, the fundamental understanding of the physical mechanisms at play in responsive materials also shines light in the understanding of biological artefacts.
Chemical Chaos
Author: Stephen K. Scott
Publisher: Oxford University Press
ISBN: 9780198556589
Category : Science
Languages : en
Pages : 484
Book Description
Table of contents: 1. Introduction. 2. Mappings. 3. Flows. 1. Two-variable systems. 4. Flows II. Three-vairable systems. 5. Forced systems. 6. Coupled systems. 7.Experimental methods. 8. The Belousov-Zhabotinskii reaction and other solution-phase reactions. 9. Gas-phase reactions. 10. Heterogeneous catalysis. 11. Electrodissolution reactions. 12. Biochemical systems. Index.
Publisher: Oxford University Press
ISBN: 9780198556589
Category : Science
Languages : en
Pages : 484
Book Description
Table of contents: 1. Introduction. 2. Mappings. 3. Flows. 1. Two-variable systems. 4. Flows II. Three-vairable systems. 5. Forced systems. 6. Coupled systems. 7.Experimental methods. 8. The Belousov-Zhabotinskii reaction and other solution-phase reactions. 9. Gas-phase reactions. 10. Heterogeneous catalysis. 11. Electrodissolution reactions. 12. Biochemical systems. Index.
Chemical Instabilities
Author: G. Nicolis
Publisher: Springer Science & Business Media
ISBN: 9400972547
Category : Science
Languages : en
Pages : 428
Book Description
On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex xon Corporation. The present Volume includes most of the material of the in vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and hysteresis, oscillatory behavior in time, spatial patterns, or propagating wave fronts. The primary objective of the workshop was to bring together researchers actively engaged in fields in which instabilities and nonlinear phenomena similar to those observed in chemistry are of current and primary concern : chemical engineering (especially surface catalysis), combustion (dynamics of ignition, flame sta bili t;y), interfaces (emulsification, dendritic growth), geology (regularly repeated patterns of mineralization 1n a variety of spabe scales), and materials science (dynamical solidification, behavior of matter under irradiation).
Publisher: Springer Science & Business Media
ISBN: 9400972547
Category : Science
Languages : en
Pages : 428
Book Description
On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex xon Corporation. The present Volume includes most of the material of the in vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and hysteresis, oscillatory behavior in time, spatial patterns, or propagating wave fronts. The primary objective of the workshop was to bring together researchers actively engaged in fields in which instabilities and nonlinear phenomena similar to those observed in chemistry are of current and primary concern : chemical engineering (especially surface catalysis), combustion (dynamics of ignition, flame sta bili t;y), interfaces (emulsification, dendritic growth), geology (regularly repeated patterns of mineralization 1n a variety of spabe scales), and materials science (dynamical solidification, behavior of matter under irradiation).
Polymer Processing Instabilities
Author: Savvas G. Hatzikiriakos
Publisher: CRC Press
ISBN: 142003068X
Category : Science
Languages : en
Pages : 484
Book Description
Polymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase product
Publisher: CRC Press
ISBN: 142003068X
Category : Science
Languages : en
Pages : 484
Book Description
Polymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase product
Thermoacoustic Instability
Author: R. I. Sujith
Publisher: Springer Nature
ISBN: 3030811352
Category : Science
Languages : en
Pages : 484
Book Description
This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.
Publisher: Springer Nature
ISBN: 3030811352
Category : Science
Languages : en
Pages : 484
Book Description
This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.
Theory and Applications of Hopf Bifurcation
Author: B. D. Hassard
Publisher: CUP Archive
ISBN: 9780521231589
Category : Mathematics
Languages : en
Pages : 324
Book Description
This text will be of value to all those interested in and studying the subject in the mathematical, natural and engineering sciences.
Publisher: CUP Archive
ISBN: 9780521231589
Category : Mathematics
Languages : en
Pages : 324
Book Description
This text will be of value to all those interested in and studying the subject in the mathematical, natural and engineering sciences.
Untangling Complex Systems
Author: Pier Luigi Gentili
Publisher: CRC Press
ISBN: 0429847548
Category : Mathematics
Languages : en
Pages : 584
Book Description
Complex Systems are natural systems that science is unable to describe exhaustively. Examples of Complex Systems are both unicellular and multicellular living beings; human brains; human immune systems; ecosystems; human societies; the global economy; the climate and geology of our planet. This book is an account of a marvelous interdisciplinary journey the author made to understand properties of the Complex Systems. He has undertaken his trip, equipped with the fundamental principles of physical chemistry, in particular, the Second Law of Thermodynamics that describes the spontaneous evolution of our universe, and the tools of Non-linear dynamics. By dealing with many disciplines, in particular, chemistry, biology, physics, economy, and philosophy, the author demonstrates that Complex Systems are intertwined networks, working in out-of-equilibrium conditions, which exhibit emergent properties, such as self-organization phenomena and chaotic behaviors in time and space.
Publisher: CRC Press
ISBN: 0429847548
Category : Mathematics
Languages : en
Pages : 584
Book Description
Complex Systems are natural systems that science is unable to describe exhaustively. Examples of Complex Systems are both unicellular and multicellular living beings; human brains; human immune systems; ecosystems; human societies; the global economy; the climate and geology of our planet. This book is an account of a marvelous interdisciplinary journey the author made to understand properties of the Complex Systems. He has undertaken his trip, equipped with the fundamental principles of physical chemistry, in particular, the Second Law of Thermodynamics that describes the spontaneous evolution of our universe, and the tools of Non-linear dynamics. By dealing with many disciplines, in particular, chemistry, biology, physics, economy, and philosophy, the author demonstrates that Complex Systems are intertwined networks, working in out-of-equilibrium conditions, which exhibit emergent properties, such as self-organization phenomena and chaotic behaviors in time and space.
Kinetics of Chemical Reactions
Author: Guy B. Marin
Publisher: John Wiley & Sons
ISBN: 3527808361
Category : Science
Languages : en
Pages : 466
Book Description
This second, extended and updated edition presents the current state of kinetics of chemical reactions, combining basic knowledge with results recently obtained at the frontier of science. Special attention is paid to the problem of the chemical reaction complexity with theoretical and methodological concepts illustrated throughout by numerous examples taken from heterogeneous catalysis combustion and enzyme processes. Of great interest to graduate students in both chemistry and chemical engineering.
Publisher: John Wiley & Sons
ISBN: 3527808361
Category : Science
Languages : en
Pages : 466
Book Description
This second, extended and updated edition presents the current state of kinetics of chemical reactions, combining basic knowledge with results recently obtained at the frontier of science. Special attention is paid to the problem of the chemical reaction complexity with theoretical and methodological concepts illustrated throughout by numerous examples taken from heterogeneous catalysis combustion and enzyme processes. Of great interest to graduate students in both chemistry and chemical engineering.