Author: Christian C. Enz
Publisher: John Wiley & Sons
ISBN: 0470855452
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.
Charge-Based MOS Transistor Modeling
Author: Christian C. Enz
Publisher: John Wiley & Sons
ISBN: 0470855452
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.
Publisher: John Wiley & Sons
ISBN: 0470855452
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.
Mosfet Modeling For Circuit Analysis And Design
Author: Carlos Galup-montoro
Publisher: World Scientific
ISBN: 9814477974
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.
Publisher: World Scientific
ISBN: 9814477974
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.
Classical and Object-oriented Software Engineering with UML and C++
Author: Stephen R. Schach
Publisher: McGraw-Hill Companies
ISBN:
Category : Computers
Languages : en
Pages : 658
Book Description
The Universal Modeling Language (UML) has become an industry standard in software engineering. In this text, it is used for object-oriented analysis and design as well as when diagrams depict objects and their interrelationships.
Publisher: McGraw-Hill Companies
ISBN:
Category : Computers
Languages : en
Pages : 658
Book Description
The Universal Modeling Language (UML) has become an industry standard in software engineering. In this text, it is used for object-oriented analysis and design as well as when diagrams depict objects and their interrelationships.
Mosfet Modeling for VLSI Simulation
Author: Narain Arora
Publisher: World Scientific
ISBN: 9812707581
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.
Publisher: World Scientific
ISBN: 9812707581
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.
Systematic Design of Analog CMOS Circuits
Author: Paul G. A. Jespers
Publisher: Cambridge University Press
ISBN: 1108136737
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
Discover a fresh approach to efficient and insight-driven analog integrated circuit design in nanoscale-CMOS with this hands-on guide. Expert authors present a sizing methodology that employs SPICE-generated lookup tables, enabling close agreement between hand analysis and simulation. This enables the exploration of analog circuit tradeoffs using the gm/ID ratio as a central variable in script-based design flows, and eliminates time-consuming iterations in a circuit simulator. Supported by downloadable MATLAB code, and including over forty detailed worked examples, this book will provide professional analog circuit designers, researchers, and graduate students with the theoretical know-how and practical tools needed to acquire a systematic and re-use oriented design style for analog integrated circuits in modern CMOS.
Publisher: Cambridge University Press
ISBN: 1108136737
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
Discover a fresh approach to efficient and insight-driven analog integrated circuit design in nanoscale-CMOS with this hands-on guide. Expert authors present a sizing methodology that employs SPICE-generated lookup tables, enabling close agreement between hand analysis and simulation. This enables the exploration of analog circuit tradeoffs using the gm/ID ratio as a central variable in script-based design flows, and eliminates time-consuming iterations in a circuit simulator. Supported by downloadable MATLAB code, and including over forty detailed worked examples, this book will provide professional analog circuit designers, researchers, and graduate students with the theoretical know-how and practical tools needed to acquire a systematic and re-use oriented design style for analog integrated circuits in modern CMOS.
CMOS Analog Design Using All-Region MOSFET Modeling
Author: Márcio Cherem Schneider
Publisher: Cambridge University Press
ISBN: 052111036X
Category : Computers
Languages : en
Pages : 505
Book Description
The essentials of analog circuit design with a unique all-region MOSFET modeling approach.
Publisher: Cambridge University Press
ISBN: 052111036X
Category : Computers
Languages : en
Pages : 505
Book Description
The essentials of analog circuit design with a unique all-region MOSFET modeling approach.
Compact Modeling
Author: Gennady Gildenblat
Publisher: Springer Science & Business Media
ISBN: 9048186145
Category : Technology & Engineering
Languages : en
Pages : 531
Book Description
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.
Publisher: Springer Science & Business Media
ISBN: 9048186145
Category : Technology & Engineering
Languages : en
Pages : 531
Book Description
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.
The Physics and Modeling of Mosfets
Author: Mitiko Miura-Mattausch
Publisher: World Scientific
ISBN: 9812812059
Category : Technology & Engineering
Languages : en
Pages : 381
Book Description
This volume provides a timely description of the latest compact MOS transistor models for circuit simulation. The first generation BSIM3 and BSIM4 models that have dominated circuit simulation in the last decade are no longer capable of characterizing all the important features of modern sub-100nm MOS transistors. This book discusses the second generation MOS transistor models that are now in urgent demand and being brought into the initial phase of manufacturing applications. It considers how the models are to include the complete drift-diffusion theory using the surface potential variable in the MOS transistor channel in order to give one characterization equation.
Publisher: World Scientific
ISBN: 9812812059
Category : Technology & Engineering
Languages : en
Pages : 381
Book Description
This volume provides a timely description of the latest compact MOS transistor models for circuit simulation. The first generation BSIM3 and BSIM4 models that have dominated circuit simulation in the last decade are no longer capable of characterizing all the important features of modern sub-100nm MOS transistors. This book discusses the second generation MOS transistor models that are now in urgent demand and being brought into the initial phase of manufacturing applications. It considers how the models are to include the complete drift-diffusion theory using the surface potential variable in the MOS transistor channel in order to give one characterization equation.
MOSFET Modeling & BSIM3 User’s Guide
Author: Yuhua Cheng
Publisher: Springer Science & Business Media
ISBN: 0306470500
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
Circuit simulation is essential in integrated circuit design, and the accuracy of circuit simulation depends on the accuracy of the transistor model. BSIM3v3 (BSIM for Berkeley Short-channel IGFET Model) has been selected as the first MOSFET model for standardization by the Compact Model Council, a consortium of leading companies in semiconductor and design tools. In the next few years, many fabless and integrated semiconductor companies are expected to switch from dozens of other MOSFET models to BSIM3. This will require many device engineers and most circuit designers to learn the basics of BSIM3. MOSFET Modeling & BSIM3 User's Guide explains the detailed physical effects that are important in modeling MOSFETs, and presents the derivations of compact model expressions so that users can understand the physical meaning of the model equations and parameters. It is the first book devoted to BSIM3. It treats the BSIM3 model in detail as used in digital, analog and RF circuit design. It covers the complete set of models, i.e., I-V model, capacitance model, noise model, parasitics model, substrate current model, temperature effect model and non quasi-static model. MOSFET Modeling & BSIM3 User's Guide not only addresses the device modeling issues but also provides a user's guide to the device or circuit design engineers who use the BSIM3 model in digital/analog circuit design, RF modeling, statistical modeling, and technology prediction. This book is written for circuit designers and device engineers, as well as device scientists worldwide. It is also suitable as a reference for graduate courses and courses in circuit design or device modelling. Furthermore, it can be used as a textbook for industry courses devoted to BSIM3. MOSFET Modeling & BSIM3 User's Guide is comprehensive and practical. It is balanced between the background information and advanced discussion of BSIM3. It is helpful to experts and students alike.
Publisher: Springer Science & Business Media
ISBN: 0306470500
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
Circuit simulation is essential in integrated circuit design, and the accuracy of circuit simulation depends on the accuracy of the transistor model. BSIM3v3 (BSIM for Berkeley Short-channel IGFET Model) has been selected as the first MOSFET model for standardization by the Compact Model Council, a consortium of leading companies in semiconductor and design tools. In the next few years, many fabless and integrated semiconductor companies are expected to switch from dozens of other MOSFET models to BSIM3. This will require many device engineers and most circuit designers to learn the basics of BSIM3. MOSFET Modeling & BSIM3 User's Guide explains the detailed physical effects that are important in modeling MOSFETs, and presents the derivations of compact model expressions so that users can understand the physical meaning of the model equations and parameters. It is the first book devoted to BSIM3. It treats the BSIM3 model in detail as used in digital, analog and RF circuit design. It covers the complete set of models, i.e., I-V model, capacitance model, noise model, parasitics model, substrate current model, temperature effect model and non quasi-static model. MOSFET Modeling & BSIM3 User's Guide not only addresses the device modeling issues but also provides a user's guide to the device or circuit design engineers who use the BSIM3 model in digital/analog circuit design, RF modeling, statistical modeling, and technology prediction. This book is written for circuit designers and device engineers, as well as device scientists worldwide. It is also suitable as a reference for graduate courses and courses in circuit design or device modelling. Furthermore, it can be used as a textbook for industry courses devoted to BSIM3. MOSFET Modeling & BSIM3 User's Guide is comprehensive and practical. It is balanced between the background information and advanced discussion of BSIM3. It is helpful to experts and students alike.
Transistor Level Modeling for Analog/RF IC Design
Author: Wladyslaw Grabinski
Publisher: Springer Science & Business Media
ISBN: 1402045565
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
The editors and authors present a wealth of knowledge regarding the most relevant aspects in the field of MOS transistor modeling. The variety of subjects and the high quality of content of this volume make it a reference document for researchers and users of MOSFET devices and models. The book can be recommended to everyone who is involved in compact model developments, numerical TCAD modeling, parameter extraction, space-level simulation or model standardization. The book will appeal equally to PhD students who want to understand the ins and outs of MOSFETs as well as to modeling designers working in the analog and high-frequency areas.
Publisher: Springer Science & Business Media
ISBN: 1402045565
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
The editors and authors present a wealth of knowledge regarding the most relevant aspects in the field of MOS transistor modeling. The variety of subjects and the high quality of content of this volume make it a reference document for researchers and users of MOSFET devices and models. The book can be recommended to everyone who is involved in compact model developments, numerical TCAD modeling, parameter extraction, space-level simulation or model standardization. The book will appeal equally to PhD students who want to understand the ins and outs of MOSFETs as well as to modeling designers working in the analog and high-frequency areas.