Author: S. Maharasi
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 10
Book Description
In this paper, with a new idea, we define weak bi-ideal and investigate some of its properties. We characterize weak bi-ideal by biideals of bi-near ing .In the case of left selfdistributive S-bi-near ring
Characterization of Weak Bi-Ideals in Bi-Near Rings
Author: S. Maharasi
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 10
Book Description
In this paper, with a new idea, we define weak bi-ideal and investigate some of its properties. We characterize weak bi-ideal by biideals of bi-near ing .In the case of left selfdistributive S-bi-near ring
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 10
Book Description
In this paper, with a new idea, we define weak bi-ideal and investigate some of its properties. We characterize weak bi-ideal by biideals of bi-near ing .In the case of left selfdistributive S-bi-near ring
Characterization of Weak Bi-Ideals in Bi-Near Rings
Author: S. Maharasi
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 10
Book Description
In this paper, with a new idea, we define weak bi-ideal and investigate some of its properties. We characterize weak bi-ideal by biideals of bi-near ing .In the case of left selfdistributive S-bi-near ring We establish necessary and sufficient condition for weak bi-ideal to be bi-ideal and strong bi-ideal.This concept motivates the study of different kinds of new biregular bi-near rings in algebraic theory especially regularity in quad near ring and fuzzy logic.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 10
Book Description
In this paper, with a new idea, we define weak bi-ideal and investigate some of its properties. We characterize weak bi-ideal by biideals of bi-near ing .In the case of left selfdistributive S-bi-near ring We establish necessary and sufficient condition for weak bi-ideal to be bi-ideal and strong bi-ideal.This concept motivates the study of different kinds of new biregular bi-near rings in algebraic theory especially regularity in quad near ring and fuzzy logic.
Integral Closure of Ideals, Rings, and Modules
Author: Craig Huneke
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Smarandache Near-Rings
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233667
Category : Mathematics
Languages : en
Pages : 201
Book Description
Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).
Publisher: Infinite Study
ISBN: 1931233667
Category : Mathematics
Languages : en
Pages : 201
Book Description
Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).
Soochow Journal of Mathematics
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 444
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 444
Book Description
Indian Science Abstracts
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 996
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 996
Book Description
Lectures on Formal and Rigid Geometry
Author: Siegfried Bosch
Publisher: Springer
ISBN: 3319044176
Category : Mathematics
Languages : en
Pages : 255
Book Description
The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".
Publisher: Springer
ISBN: 3319044176
Category : Mathematics
Languages : en
Pages : 255
Book Description
The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".
Nearrings, Nearfields And Related Topics
Author: Kuncham Syam Prasad
Publisher: World Scientific
ISBN: 981320737X
Category : Mathematics
Languages : en
Pages : 324
Book Description
Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G
Publisher: World Scientific
ISBN: 981320737X
Category : Mathematics
Languages : en
Pages : 324
Book Description
Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G
Introductory Functional Analysis with Applications
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Smarandache Fuzzy Algebra
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233748
Category : Mathematics
Languages : en
Pages : 455
Book Description
The author studies the Smarandache Fuzzy Algebra, which, like its predecessor Fuzzy Algebra, arose from the need to define structures that were more compatible with the real world where the grey areas mattered, not only black or white.In any human field, a Smarandache n-structure on a set S means a weak structure {w(0)} on S such that there exists a chain of proper subsets P(n-1) in P(n-2) in?in P(2) in P(1) in S whose corresponding structures verify the chain {w(n-1)} includes {w(n-2)} includes? includes {w(2)} includes {w(1)} includes {w(0)}, where 'includes' signifies 'strictly stronger' (i.e., structure satisfying more axioms).This book is referring to a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set S, i.e. a weak structure {w(0)} on S such that there exists a proper subset P of S, which is embedded with a stronger structure {w(1)}. Properties of Smarandache fuzzy semigroups, groupoids, loops, bigroupoids, biloops, non-associative rings, birings, vector spaces, semirings, semivector spaces, non-associative semirings, bisemirings, near-rings, non-associative near-ring, and binear-rings are presented in the second part of this book together with examples, solved and unsolved problems, and theorems. Also, applications of Smarandache groupoids, near-rings, and semirings in automaton theory, in error correcting codes, and in the construction of S-sub-biautomaton can be found in the last chapter.
Publisher: Infinite Study
ISBN: 1931233748
Category : Mathematics
Languages : en
Pages : 455
Book Description
The author studies the Smarandache Fuzzy Algebra, which, like its predecessor Fuzzy Algebra, arose from the need to define structures that were more compatible with the real world where the grey areas mattered, not only black or white.In any human field, a Smarandache n-structure on a set S means a weak structure {w(0)} on S such that there exists a chain of proper subsets P(n-1) in P(n-2) in?in P(2) in P(1) in S whose corresponding structures verify the chain {w(n-1)} includes {w(n-2)} includes? includes {w(2)} includes {w(1)} includes {w(0)}, where 'includes' signifies 'strictly stronger' (i.e., structure satisfying more axioms).This book is referring to a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set S, i.e. a weak structure {w(0)} on S such that there exists a proper subset P of S, which is embedded with a stronger structure {w(1)}. Properties of Smarandache fuzzy semigroups, groupoids, loops, bigroupoids, biloops, non-associative rings, birings, vector spaces, semirings, semivector spaces, non-associative semirings, bisemirings, near-rings, non-associative near-ring, and binear-rings are presented in the second part of this book together with examples, solved and unsolved problems, and theorems. Also, applications of Smarandache groupoids, near-rings, and semirings in automaton theory, in error correcting codes, and in the construction of S-sub-biautomaton can be found in the last chapter.