Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover via a biochemical conversion process. The process examined is similar to GreenPower, developed by American Process. In this process, hemicelluloses are extracted from biomass and used to produce hydrous Ethanol. The rest of the biomass is burned to generate electricity. In addition, a potassium acetate solution is also generated as by-product. This report was developed based essentially on the following reference(s): US Patent 20110195468, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Cellulosic Ethanol from Corn Stover - Cost Analysis - Ethanol E14A
Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover via a biochemical conversion process. The process examined is similar to GreenPower, developed by American Process. In this process, hemicelluloses are extracted from biomass and used to produce hydrous Ethanol. The rest of the biomass is burned to generate electricity. In addition, a potassium acetate solution is also generated as by-product. This report was developed based essentially on the following reference(s): US Patent 20110195468, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover via a biochemical conversion process. The process examined is similar to GreenPower, developed by American Process. In this process, hemicelluloses are extracted from biomass and used to produce hydrous Ethanol. The rest of the biomass is burned to generate electricity. In addition, a potassium acetate solution is also generated as by-product. This report was developed based essentially on the following reference(s): US Patent 20110195468, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Cellulosic Ethanol from Corn Stover - Cost Analysis - Ethanol E11A
Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover via a biochemical conversion process. The process examined is similar to the process reported by the National Renewable Energy Laboratory (NREL). This process involves the following steps in the production of hydrous Ethanol: corn stover pretreatment with dilute acid and ammonia conditioning; enzymatic hydrolysis; and fermentation. Electricity is also generated as by-product. This report was developed based essentially on the following reference(s): Humbird, D., et al., "Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol, " Report NREL/TP-5100-47764, National Renewable Energy Laboratory (NREL), 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover via a biochemical conversion process. The process examined is similar to the process reported by the National Renewable Energy Laboratory (NREL). This process involves the following steps in the production of hydrous Ethanol: corn stover pretreatment with dilute acid and ammonia conditioning; enzymatic hydrolysis; and fermentation. Electricity is also generated as by-product. This report was developed based essentially on the following reference(s): Humbird, D., et al., "Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol, " Report NREL/TP-5100-47764, National Renewable Energy Laboratory (NREL), 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Cellulosic Ethanol from Corn Stover - Cost Analysis - Ethanol E12A
Author: Intratec
Publisher: Intratec Solutions
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover based on a biochemical conversion process. The process examined is similar to the process reported by the National Renewable Energy Laboratory (NREL). This process involves the following steps in the production of hydrous Ethanol: corn stover pretreatment with dilute acid and overliming; enzymatic hydrolysis; and fermentation. Electricity is also generated as by-product. This report was developed based essentially on the following reference(s): Aden, A., et al., "Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover", Report NREL/TP-510-32438, National Renewable Energy Laboratory, 2002 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, Hemicelluloses, Cellulose
Publisher: Intratec Solutions
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover based on a biochemical conversion process. The process examined is similar to the process reported by the National Renewable Energy Laboratory (NREL). This process involves the following steps in the production of hydrous Ethanol: corn stover pretreatment with dilute acid and overliming; enzymatic hydrolysis; and fermentation. Electricity is also generated as by-product. This report was developed based essentially on the following reference(s): Aden, A., et al., "Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover", Report NREL/TP-510-32438, National Renewable Energy Laboratory, 2002 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, Hemicelluloses, Cellulose
Cellulosic Ethanol from Corn Stover - Cost Analysis - Ethanol E13A
Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover using a biochemical conversion process. The process examined is similar to AVAP technology, developed by American Process. In this process, biomass is fractionated into cellulose, hemicelluloses and lignin. The hemicellulose and cellulose are converted to monomer sugars, which are then fermented to produce hydrous Ethanol, while lignin is burned to generate electricity. This report was developed based essentially on the following reference(s): WO Patent 2011044378, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from corn stover using a biochemical conversion process. The process examined is similar to AVAP technology, developed by American Process. In this process, biomass is fractionated into cellulose, hemicelluloses and lignin. The hemicellulose and cellulose are converted to monomer sugars, which are then fermented to produce hydrous Ethanol, while lignin is burned to generate electricity. This report was developed based essentially on the following reference(s): WO Patent 2011044378, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Cellulosic Ethanol from Wood Chips - Cost Analysis - Ethanol E51A
Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from wood chips via a thermochemical process. The process examined is similar to the one reported by the National Renewable Energy Laboratory (NREL). In this process, biomass is subjected to gasification generating syngas, which is then converted to hydrous Ethanol. The process employs concepts similar to those proposed in patents issued to Range Fuels. Mixed alcohols are generated as by-products. This report was developed based essentially on the following reference(s): Phillips, S., et al., "Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass, " Report NREL/TP-510-41168, National Renewable Energy Laboratory (NREL), 2007 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from wood chips via a thermochemical process. The process examined is similar to the one reported by the National Renewable Energy Laboratory (NREL). In this process, biomass is subjected to gasification generating syngas, which is then converted to hydrous Ethanol. The process employs concepts similar to those proposed in patents issued to Range Fuels. Mixed alcohols are generated as by-products. This report was developed based essentially on the following reference(s): Phillips, S., et al., "Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass, " Report NREL/TP-510-41168, National Renewable Energy Laboratory (NREL), 2007 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Cellulosic Ethanol from Wood Chips - Cost Analysis - Ethanol E52A
Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from wood chips using a biochemical conversion process. The process examined is similar to AVAP technology, developed by American Process. In this process, biomass is fractionated into cellulose, hemicelluloses and lignin. The hemicellulose and cellulose are converted to monomer sugars, which are then fermented to produce hydrous Ethanol, while lignin is burned to generate electricity. This report was developed based essentially on the following reference(s): WO Patent 2011044378, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from wood chips using a biochemical conversion process. The process examined is similar to AVAP technology, developed by American Process. In this process, biomass is fractionated into cellulose, hemicelluloses and lignin. The hemicellulose and cellulose are converted to monomer sugars, which are then fermented to produce hydrous Ethanol, while lignin is burned to generate electricity. This report was developed based essentially on the following reference(s): WO Patent 2011044378, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Cellulosic Ethanol from Wood Chips - Cost Analysis - Ethanol E53A
Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from wood chips using a biochemical conversion process. The process examined is similar to GreenPower, developed by American Process. In this process, hemicelluloses are extracted from biomass and used to produce hydrous Ethanol. The rest of the biomass is burned to generate electricity. In addition, a potassium acetate solution is also generated as by-product. This report was developed based essentially on the following reference(s): US Patent 20110195468, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from wood chips using a biochemical conversion process. The process examined is similar to GreenPower, developed by American Process. In this process, hemicelluloses are extracted from biomass and used to produce hydrous Ethanol. The rest of the biomass is burned to generate electricity. In addition, a potassium acetate solution is also generated as by-product. This report was developed based essentially on the following reference(s): US Patent 20110195468, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Cellulosic Ethanol from Sugarcane Bagasse - Cost Analysis - Ethanol E63F
Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from sugarcane bagasse using a biochemical conversion process. The process examined is similar to GreenPower, developed by American Process. In this process, hemicelluloses are extracted from biomass and used to produce hydrous Ethanol. The rest of the biomass is burned to generate electricity. In addition, a potassium acetate solution is also generated as by-product. This report was developed based essentially on the following reference(s): US Patent 20110195468, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from sugarcane bagasse using a biochemical conversion process. The process examined is similar to GreenPower, developed by American Process. In this process, hemicelluloses are extracted from biomass and used to produce hydrous Ethanol. The rest of the biomass is burned to generate electricity. In addition, a potassium acetate solution is also generated as by-product. This report was developed based essentially on the following reference(s): US Patent 20110195468, issued to American Process in 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Cellulosic Ethanol from Switchgrass - Cost Analysis - Ethanol E81A
Author: Intratec
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from switchgrass based on a biochemical conversion process. The process examined is similar to the process reported by the National Renewable Energy Laboratory (NREL). This process involves the following steps in the production of hydrous Ethanol: biomass pretreatment with dilute acid and ammonia conditioning; enzymatic hydrolysis; and fermentation. Electricity is also generated as by-product. This report was developed based essentially on the following reference(s): Humbird, D., et al., "Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol, " Report NREL/TP-5100-47764, National Renewable Energy Laboratory (NREL), 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
Publisher: Intratec
ISBN:
Category : Business & Economics
Languages : en
Pages : 102
Book Description
This report presents a cost analysis of second generation Ethanol production from switchgrass based on a biochemical conversion process. The process examined is similar to the process reported by the National Renewable Energy Laboratory (NREL). This process involves the following steps in the production of hydrous Ethanol: biomass pretreatment with dilute acid and ammonia conditioning; enzymatic hydrolysis; and fermentation. Electricity is also generated as by-product. This report was developed based essentially on the following reference(s): Humbird, D., et al., "Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol, " Report NREL/TP-5100-47764, National Renewable Energy Laboratory (NREL), 2011 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
NREL 2012 Achievement of Ethanol Cost Targets
Author: Ling Tao
Publisher:
ISBN:
Category : Alcohol as fuel
Languages : en
Pages : 36
Book Description
For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.
Publisher:
ISBN:
Category : Alcohol as fuel
Languages : en
Pages : 36
Book Description
For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.