Author: J. Donald Monk
Publisher: Springer Science & Business Media
ISBN: 3034807309
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the same author, the present work is much larger than either of these. It contains solutions to many of the open problems of the earlier volumes. Among the new topics are continuum cardinals on Boolean algebras, with a lengthy treatment of the reaping number. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including interval algebras, tree algebras and superatomic algebras.
Cardinal Invariants on Boolean Algebras
Author: J. Donald Monk
Publisher: Springer Science & Business Media
ISBN: 3034807309
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the same author, the present work is much larger than either of these. It contains solutions to many of the open problems of the earlier volumes. Among the new topics are continuum cardinals on Boolean algebras, with a lengthy treatment of the reaping number. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including interval algebras, tree algebras and superatomic algebras.
Publisher: Springer Science & Business Media
ISBN: 3034807309
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the same author, the present work is much larger than either of these. It contains solutions to many of the open problems of the earlier volumes. Among the new topics are continuum cardinals on Boolean algebras, with a lengthy treatment of the reaping number. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including interval algebras, tree algebras and superatomic algebras.
Cardinal Invariants On Boolean Algebras
Author: James Donald Monk
Publisher: Springer Science & Business Media
ISBN: 9783764354022
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through to simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 97 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) by the same author, the present work is nearly twice the size of the original work. It contains solutions to many of the open problems which are discussed in greater detail than before. Among the new topics considered are ultraproducts and FedorchukA-s theorem, and there is a more complete treatment of the cellularity of free products. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including tree algebras and superatomic algebras. Review: "This book is an indispensable tool for anyone working in Boolean algebra, and is also recommended for set-theoretic topologists." - Zentralblatt MATH
Publisher: Springer Science & Business Media
ISBN: 9783764354022
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through to simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 97 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) by the same author, the present work is nearly twice the size of the original work. It contains solutions to many of the open problems which are discussed in greater detail than before. Among the new topics considered are ultraproducts and FedorchukA-s theorem, and there is a more complete treatment of the cellularity of free products. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including tree algebras and superatomic algebras. Review: "This book is an indispensable tool for anyone working in Boolean algebra, and is also recommended for set-theoretic topologists." - Zentralblatt MATH
Cardinal Functions on Boolean Algebras
Author: MONK
Publisher: Birkhäuser
ISBN: 3034863810
Category : Science
Languages : en
Pages : 159
Book Description
Publisher: Birkhäuser
ISBN: 3034863810
Category : Science
Languages : en
Pages : 159
Book Description
Cardinal Functions on Boolean Algebras
Author: James Donald Monk
Publisher: Birkhauser
ISBN:
Category : Mathematics
Languages : en
Pages : 168
Book Description
Publisher: Birkhauser
ISBN:
Category : Mathematics
Languages : en
Pages : 168
Book Description
Cardinal Algebras
Author: Alfred Tarski
Publisher:
ISBN:
Category : Algebra, Abstract
Languages : en
Pages : 344
Book Description
Publisher:
ISBN:
Category : Algebra, Abstract
Languages : en
Pages : 344
Book Description
Handbook of Boolean Algebras
Author: Sabine Koppelberg
Publisher:
ISBN: 9780444872913
Category : Algebra, Boolean
Languages : en
Pages : 312
Book Description
Publisher:
ISBN: 9780444872913
Category : Algebra, Boolean
Languages : en
Pages : 312
Book Description
Canadian Journal of Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 224
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 224
Book Description
Studies in Memory of Issai Schur
Author: Anthony Joseph
Publisher: Springer Science & Business Media
ISBN: 1461200458
Category : Mathematics
Languages : en
Pages : 545
Book Description
This volume Studies in Memory of Issai Schur was conceived as a tribute to Schur's of his tragic end. His impact on great contributions to mathematics and in remembrance of mathematicians Representation Theory alone was so great that a significant number of Researchers (TMR) Network, in the European Community Training and Mobility Orbits, Crystals and Representation Theory, in operation during the period (1997-2002) have been occupied with what has been called Schur theory. Consequently, this volume has the additional purpose of recording some of the significant results of the network. It was furthermore appropriate that invited contributors should be amongst the speakers at the Paris Midterm Workshop of the network held at Chevaleret during 21-25 May, 2000 as well as those of the Schur Memoriam Workshop held at the Weizmann Institute, Rehovot, during 27-31 December 2000. The latter marked the sixtieth anniversary of Schur's passing and took place in the 125th year of his birth.
Publisher: Springer Science & Business Media
ISBN: 1461200458
Category : Mathematics
Languages : en
Pages : 545
Book Description
This volume Studies in Memory of Issai Schur was conceived as a tribute to Schur's of his tragic end. His impact on great contributions to mathematics and in remembrance of mathematicians Representation Theory alone was so great that a significant number of Researchers (TMR) Network, in the European Community Training and Mobility Orbits, Crystals and Representation Theory, in operation during the period (1997-2002) have been occupied with what has been called Schur theory. Consequently, this volume has the additional purpose of recording some of the significant results of the network. It was furthermore appropriate that invited contributors should be amongst the speakers at the Paris Midterm Workshop of the network held at Chevaleret during 21-25 May, 2000 as well as those of the Schur Memoriam Workshop held at the Weizmann Institute, Rehovot, during 27-31 December 2000. The latter marked the sixtieth anniversary of Schur's passing and took place in the 125th year of his birth.
Set-Theoretic Topology
Author: George M. Reed
Publisher: Academic Press
ISBN: 1483263924
Category : Mathematics
Languages : en
Pages : 453
Book Description
Set-Theoretic Topology deals with results concerning set theoretic topology and indicates directions for further investigations. Topics covered include normality and conditions in abstract spaces, compactifications, cardinal invariance, mapping theory, product spaces, and metrization. Comprised of 29 chapters, this volume begins with an example concerning the preservation of the Lindelöf property in product spaces, followed by a discussion on closed-completeness in spaces with a quasi-G? diagonal and with weak covering properties. The reader is then introduced to countably compact extensions of normal locally compact M-spaces; continuously semi-metrizable spaces; and closed discrete collections of singular cardinality. Subsequent chapters focus on open mapping theory; a selection-theoretic approach to certain extension theorems; semicompletable Moore spaces; and non-normal spaces. The book also considers complete mappings in base of countable order theory before concluding with an analysis of locally separable Moore spaces. This monograph should be of value to students, researchers, and specialists in the field of mathematics.
Publisher: Academic Press
ISBN: 1483263924
Category : Mathematics
Languages : en
Pages : 453
Book Description
Set-Theoretic Topology deals with results concerning set theoretic topology and indicates directions for further investigations. Topics covered include normality and conditions in abstract spaces, compactifications, cardinal invariance, mapping theory, product spaces, and metrization. Comprised of 29 chapters, this volume begins with an example concerning the preservation of the Lindelöf property in product spaces, followed by a discussion on closed-completeness in spaces with a quasi-G? diagonal and with weak covering properties. The reader is then introduced to countably compact extensions of normal locally compact M-spaces; continuously semi-metrizable spaces; and closed discrete collections of singular cardinality. Subsequent chapters focus on open mapping theory; a selection-theoretic approach to certain extension theorems; semicompletable Moore spaces; and non-normal spaces. The book also considers complete mappings in base of countable order theory before concluding with an analysis of locally separable Moore spaces. This monograph should be of value to students, researchers, and specialists in the field of mathematics.
The Structure of the Real Line
Author: Lev Bukovský
Publisher: Springer Science & Business Media
ISBN: 3034800061
Category : Mathematics
Languages : en
Pages : 546
Book Description
The rapid development of set theory in the last fifty years, mainly by obtaining plenty of independence results, strongly influenced an understanding of the structure of the real line. This book is devoted to the study of the real line and its subsets taking into account the recent results of set theory. Whenever possible the presentation is done without the full axiom of choice. Since the book is intended to be self-contained, all necessary results of set theory, topology, measure theory, and descriptive set theory are revisited with the purpose of eliminating superfluous use of an axiom of choice. The duality of measure and category is studied in a detailed manner. Several statements pertaining to properties of the real line are shown to be undecidable in set theory. The metamathematics behind set theory is shortly explained in the appendix. Each section contains a series of exercises with additional results.
Publisher: Springer Science & Business Media
ISBN: 3034800061
Category : Mathematics
Languages : en
Pages : 546
Book Description
The rapid development of set theory in the last fifty years, mainly by obtaining plenty of independence results, strongly influenced an understanding of the structure of the real line. This book is devoted to the study of the real line and its subsets taking into account the recent results of set theory. Whenever possible the presentation is done without the full axiom of choice. Since the book is intended to be self-contained, all necessary results of set theory, topology, measure theory, and descriptive set theory are revisited with the purpose of eliminating superfluous use of an axiom of choice. The duality of measure and category is studied in a detailed manner. Several statements pertaining to properties of the real line are shown to be undecidable in set theory. The metamathematics behind set theory is shortly explained in the appendix. Each section contains a series of exercises with additional results.