Biophysical Investigation Into the Protein Dynamics Governing the Allosteric Regulation of Plant and Animal 15-Lipoxygenases

Biophysical Investigation Into the Protein Dynamics Governing the Allosteric Regulation of Plant and Animal 15-Lipoxygenases PDF Author: Daniella Roberts
Publisher:
ISBN:
Category :
Languages : en
Pages : 111

Get Book Here

Book Description
Lipoxygenases (LOXs) are a family of enzymes found in plants, animals, fungi, and bacteria that catalyze the per-oxidation of polyunsaturated fatty acids. In plants, LOXs are involved in growth, development, and defense against pathogenic attacks. There are also multiple isoforms present in humans, which have contradictory roles in the body. Specifically, human 15-LOX isoforms, 15-LOX-1 and 15-LOX-2, are involved in both homeostasis and pro-inflammatory pathways. In order to selectively target the activity of these enzymes, research has turned to allosteric regulation, which is the focus of this Thesis. Previously, the allosteric regulation of a model plant 15-LOX, soybean lipoxygenase-1 (SLO), has been characterized using hydrogen-deuterium exchange mass spectrometry (HDX-MS), revealing that the addition of the allosteric effector, oleyl sulfate (OS), alters a specific region of the enzyme. Herein, we used a combination of thermodynamic and biophysical techniques such as isothermal titration calorimetry and differential scanning calorimetry to investigate the allosteric regulation of SLO by OS. We present data which supports that the allosteric regulation of SLO by OS does not induce oligomerization or large-scale conformational changes and that the allostery is dynamically driven. We also employed HDX-MS to study the dynamics of 15-LOX-1 compared to previously collected data of 15-LOX-2 to reveal structural differences between the two isozymes that may explain their altered catalytic behavior.

Biophysical Investigation Into the Protein Dynamics Governing the Allosteric Regulation of Plant and Animal 15-Lipoxygenases

Biophysical Investigation Into the Protein Dynamics Governing the Allosteric Regulation of Plant and Animal 15-Lipoxygenases PDF Author: Daniella Roberts
Publisher:
ISBN:
Category :
Languages : en
Pages : 111

Get Book Here

Book Description
Lipoxygenases (LOXs) are a family of enzymes found in plants, animals, fungi, and bacteria that catalyze the per-oxidation of polyunsaturated fatty acids. In plants, LOXs are involved in growth, development, and defense against pathogenic attacks. There are also multiple isoforms present in humans, which have contradictory roles in the body. Specifically, human 15-LOX isoforms, 15-LOX-1 and 15-LOX-2, are involved in both homeostasis and pro-inflammatory pathways. In order to selectively target the activity of these enzymes, research has turned to allosteric regulation, which is the focus of this Thesis. Previously, the allosteric regulation of a model plant 15-LOX, soybean lipoxygenase-1 (SLO), has been characterized using hydrogen-deuterium exchange mass spectrometry (HDX-MS), revealing that the addition of the allosteric effector, oleyl sulfate (OS), alters a specific region of the enzyme. Herein, we used a combination of thermodynamic and biophysical techniques such as isothermal titration calorimetry and differential scanning calorimetry to investigate the allosteric regulation of SLO by OS. We present data which supports that the allosteric regulation of SLO by OS does not induce oligomerization or large-scale conformational changes and that the allostery is dynamically driven. We also employed HDX-MS to study the dynamics of 15-LOX-1 compared to previously collected data of 15-LOX-2 to reveal structural differences between the two isozymes that may explain their altered catalytic behavior.

2-Oxoglutarate-Dependent Oxygenases

2-Oxoglutarate-Dependent Oxygenases PDF Author: Christopher J Schofield
Publisher: Royal Society of Chemistry
ISBN: 1849739501
Category : Science
Languages : en
Pages : 508

Get Book Here

Book Description
Since the discovery of the first examples of 2-oxoglutarate-dependent oxygenase-catalysed reactions in the 1960s, a remarkably broad diversity of alternate reactions and substrates has been revealed, and extensive advances have been achieved in our understanding of the structures and catalytic mechanisms. These enzymes are important agrochemical targets and are being pursued as therapeutic targets for a wide range of diseases including cancer and anemia. This book provides a central source of information that summarizes the key features of the essential group of 2-oxoglutarate-dependent dioxygenases and related enzymes. Given the numerous recent advances and biomedical interest in the field, this book aims to unite the latest research for those already working in the field as well as to provide an introduction for those newly approaching the topic, and for those interested in translating the basic science into medicinal and agricultural benefits. The book begins with four broad chapters that highlight critical aspects, including an overview of possible catalytic reactions, structures and mechanisms. The following seventeen chapters focus on carefully selected topics, each written by leading experts in the area. Readers will find explanations of rapidly evolving research, from the chemistry of isopenicillin N synthase to the oxidation mechanism of 5-methylcytosine in DNA by ten-eleven-translocase oxygenases.

Alternative Respiratory Pathways in Higher Plants

Alternative Respiratory Pathways in Higher Plants PDF Author: Kapuganti Jagadis Gupta
Publisher: John Wiley & Sons
ISBN: 1118790464
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
Rapid developments in molecular and systems biology techniques have allowed researchers to unravel many new mechanisms through which plant cells switch over to alternative respiratory pathways. This book is a unique compendium of how and why higher plants evolved alternative respiratory metabolism. It offers a comprehensive review of current research in the biochemistry, physiology, classification and regulation of plant alternative respiratory pathways, from alternative oxidase diversity to functional marker development. The resource provides a broad range of perspectives on the applications of plant respiratory physiology, and suggests brand new areas of research. Other key features: written by an international team of reputed plant physiologists, known for their pioneering contributions to the knowledge of regular and alternative respiratory metabolism in higher plants includes step-by-step protocols for key molecular and imaging techniques advises on regulatory options for managing crop yields, food quality and environment for crop improvement and enhanced food security covers special pathways which are of key relevance in agriculture, particularly in plant post-harvest commodities Primarily for plant physiologists and plant biologists, this authoritative compendium will also be of great value to postdoctoral researchers working on plant respiration, as well as to graduate and postgraduate students and university staff in Plant Science. It is a useful resource for corporate and private firms involved in developing functional markers for breeding programs and controlling respiration for the prevention of post-harvest losses in fruit, vegetables, cut flowers and tubers.

The Molecular Biology of Plant Cells

The Molecular Biology of Plant Cells PDF Author: H. Smith
Publisher: Univ of California Press
ISBN: 9780520034655
Category : Science
Languages : en
Pages : 516

Get Book Here

Book Description
Plant cell structure and function; Gene expression and its regulation in plant cells; The manipulation of plant cells.

Biology and Biotechnology of the Plant Hormone Ethylene II

Biology and Biotechnology of the Plant Hormone Ethylene II PDF Author: A.K. Kanellis
Publisher: Springer Science & Business Media
ISBN: 9780792359418
Category : Nature
Languages : en
Pages : 486

Get Book Here

Book Description
The inflorescence of the monoecious maize plant is unique among the Gramineae in the sharp separation of the male and female structures. The male tassel at the terminus of the plant most often sheds pollen before the visual appearance of the receptive silks of th the female ear at a lateral bud, normally at the 10 leaf [I]. Earlier studies examined the ontogeny of the growing tissues beginning with the embryo in the kernel through to the obvious protuberances of the growing point as the kernel germinates. The differentiated developing soon-to-become tassel and the lateral bulges that develop into the ears on the lateral buds become apparent very early in the germinating kernel [2, 3, 46]. A certain number of cells are destined for tassel and ear development [8]. As the plant develops, there is a phase transition [\3, 16] from the vegetative lateral buds to the reproductive lateral buds. This change in phase has been ascribed to genotypic control as evidenced in the differences among different genotypes in the initiation of the reproductive [I]. The genetic control of tassel and ear initiation has been gleaned from anatomical observations. Lejeune and Bernier [I2] found that maize plants terminate the initiation of additional axillary meristems at the time of tassel initiation. This would indicate that the top-most ear shoot is initiated on the same day as the initiation of tassel development and this event signals the end of the undifferentiated growing point.

Biological Oxidations

Biological Oxidations PDF Author: H. Sund
Publisher: Springer Science & Business Media
ISBN: 3642694675
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description


Metabolic Engineering of Plant Secondary Metabolism

Metabolic Engineering of Plant Secondary Metabolism PDF Author: R. Verpoorte
Publisher: Springer Science & Business Media
ISBN: 9401594236
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
Plant secondary metabolism is an economically important source of fine chemicals, such as drugs, insecticides, dyes, flavours, and fragrances. Moreover, important traits of plants such as taste, flavour, smell, colour, or resistance against pests and diseases are also related to secondary metabolites. The genetic modification of plants is feasible nowadays. What does the possibility of engineering plant secondary metabolite pathways mean? In this book, firstly a general introduction is given on plant secondary metabolism, followed by an overview of the possible approaches that could be used to alter secondary metabolite pathways. In a series of chapters from various authorities in the field, an overview is given of the state of the art for important groups of secondary metabolites. No books have been published on this topic so far. This book will thus be a unique source of information for all those involved with plants as chemical factories of fine chemicals and those involved with the quality of food and ornamental plants. It will be useful in teaching graduate courses in the field of metabolic engineering in plants.

Nitric Oxide in Plant Growth, Development and Stress Physiology

Nitric Oxide in Plant Growth, Development and Stress Physiology PDF Author: Lorenzo Lamattina
Publisher: Springer Science & Business Media
ISBN: 3540451315
Category : Science
Languages : en
Pages : 291

Get Book Here

Book Description
This book presents recent advances in the study of nitric oxide (NO) biology, biochemistry, molecular biology, and physiology in plants. It provides an overview of current understanding of the NO actions involved in adaptive responses of plant fitness to environmental constraints. Coverage places special emphasis on NO-dependent signaling, molecular adjustments, and targets as key elements in plant growth, development, and stress physiology.

Magnesium in the Central Nervous System

Magnesium in the Central Nervous System PDF Author: Robert Vink
Publisher: University of Adelaide Press
ISBN: 0987073052
Category : Medical
Languages : en
Pages : 354

Get Book Here

Book Description
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.

Vitamins and Minerals Biofortification of Edible Plants

Vitamins and Minerals Biofortification of Edible Plants PDF Author: Noureddine Benkeblia
Publisher: John Wiley & Sons
ISBN: 1119511119
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
A Detailed Reference on How Modern Biotechnology is using the Biofortification of Crops to Improve the Vitamin and Mineral Content of Edible Plants In this reference, Vitamins and Minerals Bio-Fortification of Edible Plants, authors cover new territory on phytonutrients, focusing on the enhancement and modification of edible crops. This book presents techniques and research findings from modern biotechnology to educate readers on the newest tools and research in the field. Readers will learn how groundbreaking scientific advances have contributed to the nutritional content of edible plants and crops for animals and humans. Inside, readers will find comprehensive information on new concepts of biofortification, including but not limited to: ● Modern biotechnology and its uses for improving the vitamin and mineral content of edible plants ● Potential minerals and vitamins that can be targeted and implemented in agriculture ● Ways of enhancing the nutritional contents of edible plants to address nutritional deficiencies and improve livestock ● Methods of identifying plants that can be used to heal or prevent disease and illness While many books cover the phytonutrients of crops, this reference book reports on methodologies, techniques, and environmental changes used to enhance and improve agricultural products. It is one of the first to provide information on using modern biotechnologies to modify crops with the goal of creating health benefits.