Author: Ewa Kulczykowska
Publisher: CRC Press
ISBN: 1439845115
Category : Science
Languages : en
Pages : 278
Book Description
Each organism has its own internal biological clock, which is reset by environmental cues (Zeitgebers), thus keeping it synchronized with the external environment. It is a chemically based oscillating system within cells, relying on molecular feedback loops. Circadian biological clocks exist in most organisms.What is so special about the clock in f
Biological Clock in Fish
Author: Ewa Kulczykowska
Publisher: CRC Press
ISBN: 1439845115
Category : Science
Languages : en
Pages : 278
Book Description
Each organism has its own internal biological clock, which is reset by environmental cues (Zeitgebers), thus keeping it synchronized with the external environment. It is a chemically based oscillating system within cells, relying on molecular feedback loops. Circadian biological clocks exist in most organisms.What is so special about the clock in f
Publisher: CRC Press
ISBN: 1439845115
Category : Science
Languages : en
Pages : 278
Book Description
Each organism has its own internal biological clock, which is reset by environmental cues (Zeitgebers), thus keeping it synchronized with the external environment. It is a chemically based oscillating system within cells, relying on molecular feedback loops. Circadian biological clocks exist in most organisms.What is so special about the clock in f
Rhythms in Fishes
Author: Mohamed Ather Ali
Publisher: Springer Science & Business Media
ISBN: 9780306443183
Category : Nature
Languages : en
Pages : 370
Book Description
Addressed primarily to researchers of fish, but also of possible interest to researchers of biological rhythms in general, 19 papers from a workshop near Montreal, August 1991, discuss aspects of the biorhythms of fishes as they apply to aquaculture and to reactions to the pollution of natural habit
Publisher: Springer Science & Business Media
ISBN: 9780306443183
Category : Nature
Languages : en
Pages : 370
Book Description
Addressed primarily to researchers of fish, but also of possible interest to researchers of biological rhythms in general, 19 papers from a workshop near Montreal, August 1991, discuss aspects of the biorhythms of fishes as they apply to aquaculture and to reactions to the pollution of natural habit
The Circadian Clock
Author: Urs Albrecht
Publisher: Springer Science & Business Media
ISBN: 1441912622
Category : Science
Languages : en
Pages : 306
Book Description
With the invitation to edit this volume, I wanted to take the opportunity to assemble reviews on different aspects of circadian clocks and rhythms. Although most c- tributions in this volume focus on mammalian circadian clocks, the historical int- duction and comparative clocks section illustrate the importance of various other organisms in deciphering the mechanisms and principles of circadian biology. Circadian rhythms have been studied for centuries, but only recently, a mole- lar understanding of this process has emerged. This has taken research on circadian clocks from mystic phenomenology to a mechanistic level; chains of molecular events can describe phenomena with remarkable accuracy. Nevertheless, current models of the functioning of circadian clocks are still rudimentary. This is not due to the faultiness of discovered mechanisms, but due to the lack of undiscovered processes involved in contributing to circadian rhythmicity. We know for example, that the general circadian mechanism is not regulated equally in all tissues of m- mals. Hence, a lot still needs to be discovered to get a full understanding of cir- dian rhythms at the systems level. In this respect, technology has advanced at high speed in the last years and provided us with data illustrating the sheer complexity of regulation of physiological processes in organisms. To handle this information, computer aided integration of the results is of utmost importance in order to d- cover novel concepts that ultimately need to be tested experimentally.
Publisher: Springer Science & Business Media
ISBN: 1441912622
Category : Science
Languages : en
Pages : 306
Book Description
With the invitation to edit this volume, I wanted to take the opportunity to assemble reviews on different aspects of circadian clocks and rhythms. Although most c- tributions in this volume focus on mammalian circadian clocks, the historical int- duction and comparative clocks section illustrate the importance of various other organisms in deciphering the mechanisms and principles of circadian biology. Circadian rhythms have been studied for centuries, but only recently, a mole- lar understanding of this process has emerged. This has taken research on circadian clocks from mystic phenomenology to a mechanistic level; chains of molecular events can describe phenomena with remarkable accuracy. Nevertheless, current models of the functioning of circadian clocks are still rudimentary. This is not due to the faultiness of discovered mechanisms, but due to the lack of undiscovered processes involved in contributing to circadian rhythmicity. We know for example, that the general circadian mechanism is not regulated equally in all tissues of m- mals. Hence, a lot still needs to be discovered to get a full understanding of cir- dian rhythms at the systems level. In this respect, technology has advanced at high speed in the last years and provided us with data illustrating the sheer complexity of regulation of physiological processes in organisms. To handle this information, computer aided integration of the results is of utmost importance in order to d- cover novel concepts that ultimately need to be tested experimentally.
Biological Timekeeping: Clocks, Rhythms and Behaviour
Author: Vinod Kumar
Publisher: Springer
ISBN: 8132236882
Category : Science
Languages : en
Pages : 663
Book Description
This book is a concise, comprehensive and up-to-date account of fundamental concepts and potential applications of biological timekeeping mechanisms in animals and humans. It also discusses significant aspects of the organization and importance of timekeeping mechanisms in both groups. Divided into seven sections, it addresses important aspects including fundamental concepts; animal and human clocks; clock interactions; clocks and metabolism and immune functions; pineal, melatonin and timekeeping; and clocks, photoperiodism and seasonal behaviours. The book also focuses on biological clock applications in a 24x7 human society, particularly in connection with life-style associated disorders like obesity and diabetes. It is a valuable resource for advanced undergraduates, researchers and professionals engaged in the study of the science of biological timekeeping.
Publisher: Springer
ISBN: 8132236882
Category : Science
Languages : en
Pages : 663
Book Description
This book is a concise, comprehensive and up-to-date account of fundamental concepts and potential applications of biological timekeeping mechanisms in animals and humans. It also discusses significant aspects of the organization and importance of timekeeping mechanisms in both groups. Divided into seven sections, it addresses important aspects including fundamental concepts; animal and human clocks; clock interactions; clocks and metabolism and immune functions; pineal, melatonin and timekeeping; and clocks, photoperiodism and seasonal behaviours. The book also focuses on biological clock applications in a 24x7 human society, particularly in connection with life-style associated disorders like obesity and diabetes. It is a valuable resource for advanced undergraduates, researchers and professionals engaged in the study of the science of biological timekeeping.
Machine Learning in Aquaculture
Author: Mohd Azraai Mohd Razman
Publisher:
ISBN: 9789811522383
Category : Fishes
Languages : en
Pages : 64
Book Description
This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish farms. Computer vision and machine learning techniques make it possible to quantify the subjective perception of hunger behaviour and so allow food to be provided as necessary. The book analyses the conceptual framework of motion tracking, feeding schedule and prediction classifiers in order to classify the hunger state, and proposes a system comprising an automated feeder system, image-processing module, as well as machine learning classifiers. Furthermore, the system substitutes conventional, complex modelling techniques with a robust, artificial intelligence approach. The findings presented are of interest to researchers, fish farmers, and aquaculture technologist wanting to gain insights into the productivity of fish and fish behaviour.
Publisher:
ISBN: 9789811522383
Category : Fishes
Languages : en
Pages : 64
Book Description
This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish farms. Computer vision and machine learning techniques make it possible to quantify the subjective perception of hunger behaviour and so allow food to be provided as necessary. The book analyses the conceptual framework of motion tracking, feeding schedule and prediction classifiers in order to classify the hunger state, and proposes a system comprising an automated feeder system, image-processing module, as well as machine learning classifiers. Furthermore, the system substitutes conventional, complex modelling techniques with a robust, artificial intelligence approach. The findings presented are of interest to researchers, fish farmers, and aquaculture technologist wanting to gain insights into the productivity of fish and fish behaviour.
Chronobiology
Author: Pavol Svorc
Publisher: BoD – Books on Demand
ISBN: 1789849004
Category : Medical
Languages : en
Pages : 109
Book Description
The regular alternation of light and dark affects not only human biological systems, but also the social organization of behavior. The effect of such light modes is manifested in periodic changes in physiological functions and biological rhythms exhibited at every level of life. The book discusses some of the specificities of the circadian rhythms in living organisms and mentions aspects of the control of circadian rhythms as well as experimental and clinical cases that are closely related to circadian disruption. This book can evoke interest in many researchers who want to use this information for the advancement of their research towards a better understanding of the biological time structure.
Publisher: BoD – Books on Demand
ISBN: 1789849004
Category : Medical
Languages : en
Pages : 109
Book Description
The regular alternation of light and dark affects not only human biological systems, but also the social organization of behavior. The effect of such light modes is manifested in periodic changes in physiological functions and biological rhythms exhibited at every level of life. The book discusses some of the specificities of the circadian rhythms in living organisms and mentions aspects of the control of circadian rhythms as well as experimental and clinical cases that are closely related to circadian disruption. This book can evoke interest in many researchers who want to use this information for the advancement of their research towards a better understanding of the biological time structure.
Biological Rhythms
Author: Vinod Kumar
Publisher: Springer Science & Business Media
ISBN: 9783540428534
Category : Science
Languages : en
Pages : 640
Book Description
(Chapters 11 to 14) summarise important features of the biological clock at the level of whole animal covering all vertebrate classes (fish to mammal). Chapters 15 and 16 are on long term (seasonal) rhythms in plants and higher vertebrates. Short term rhythms (ultradian rhythms), the significance of having a clock system in animals living in extreme (arctic) environments, and the diversity of circadian responses to melatonin, the key endocrine element involved in regulation of biological rhythms, have been discussed in Chapters 17 to 19. Finally, a chapter on sensitivity to light of the photoperiodic clock is added which, using vertebrate examples, illustrates the importance of wavelength and intensity of light on circadian and non-circadian functions. A well-known expert writes each chapter. When presenting information, the text provides consistent thematic coverage and feeling for the methods of investigation. Reference citation within the body of the text adequately reflects the literature as subject is developed. A chapter begins with an abstract that enables a reader to know at the first glance the important points covered in that chapter. The chapter concludes with a full citation of references included in the text, which could be useful for further reading. The book ends with a comprehensive subject index that may be useful for quick searches.
Publisher: Springer Science & Business Media
ISBN: 9783540428534
Category : Science
Languages : en
Pages : 640
Book Description
(Chapters 11 to 14) summarise important features of the biological clock at the level of whole animal covering all vertebrate classes (fish to mammal). Chapters 15 and 16 are on long term (seasonal) rhythms in plants and higher vertebrates. Short term rhythms (ultradian rhythms), the significance of having a clock system in animals living in extreme (arctic) environments, and the diversity of circadian responses to melatonin, the key endocrine element involved in regulation of biological rhythms, have been discussed in Chapters 17 to 19. Finally, a chapter on sensitivity to light of the photoperiodic clock is added which, using vertebrate examples, illustrates the importance of wavelength and intensity of light on circadian and non-circadian functions. A well-known expert writes each chapter. When presenting information, the text provides consistent thematic coverage and feeling for the methods of investigation. Reference citation within the body of the text adequately reflects the literature as subject is developed. A chapter begins with an abstract that enables a reader to know at the first glance the important points covered in that chapter. The chapter concludes with a full citation of references included in the text, which could be useful for further reading. The book ends with a comprehensive subject index that may be useful for quick searches.
The Rhythms Of Life
Author: Leon Kreitzman
Publisher: Profile Books
ISBN: 1847653723
Category : Science
Languages : en
Pages : 288
Book Description
Popular science at its most exciting: the breaking new world of chronobiology - understanding the rhythm of life in humans and all plants and animals. The entire natural world is full of rhythms. The early bird catches the worm -and migrates to an internal calendar. Dormice hibernate away the winter. Plants open and close their flowers at the same hour each day. Bees search out nectar-rich flowers day after day. There are cicadas that can breed for only two weeks every 17 years. And in humans: why are people who work anti-social shifts more illness prone and die younger? What is jet-lag and can anything help? Why do teenagers refuse to get up in the morning, and are the rest of us really 'larks' or 'owls'? Why are most people born (and die) between 3am-5am? And should patients be given medicines (and operations) at set times of day, because the body reacts so differently in the morning, evening and at night? The answers lie in our biological clocks the mechanisms which give order to all living things. They impose a structure that enables us to change our behaviour in relation to the time of day, month or year. They are reset at sunrise and sunset each day to link astronomical time with an organism's internal time.
Publisher: Profile Books
ISBN: 1847653723
Category : Science
Languages : en
Pages : 288
Book Description
Popular science at its most exciting: the breaking new world of chronobiology - understanding the rhythm of life in humans and all plants and animals. The entire natural world is full of rhythms. The early bird catches the worm -and migrates to an internal calendar. Dormice hibernate away the winter. Plants open and close their flowers at the same hour each day. Bees search out nectar-rich flowers day after day. There are cicadas that can breed for only two weeks every 17 years. And in humans: why are people who work anti-social shifts more illness prone and die younger? What is jet-lag and can anything help? Why do teenagers refuse to get up in the morning, and are the rest of us really 'larks' or 'owls'? Why are most people born (and die) between 3am-5am? And should patients be given medicines (and operations) at set times of day, because the body reacts so differently in the morning, evening and at night? The answers lie in our biological clocks the mechanisms which give order to all living things. They impose a structure that enables us to change our behaviour in relation to the time of day, month or year. They are reset at sunrise and sunset each day to link astronomical time with an organism's internal time.
Photoperiodism
Author: Randy J. Nelson
Publisher: Oxford University Press
ISBN: 0199714630
Category : Science
Languages : en
Pages : 596
Book Description
Life evolves in a cyclic environment, and to be successful, organisms must adapt not only to their spatial habitat, but also to their temporal habitat. How do plants and animals determine the time of year so they can anticipate seasonal changes in their habitats? In most cases, day length, or photoperiod, acts as the principal external cue for determining seasonal activity. For organisms not living at the bottom of the ocean or deep in a cave, day follows night, and the length of the day changes predictably throughout the year. These changes in photoperiod provide the most accurate signal for predicting upcoming seasonal conditions. Measuring day length allows plants and animals to anticipate and adapt to seasonal changes in their environments in order to optimally time key developmental events including seasonal growth and flowering of plants, annual bouts of reproduction, dormancy and migration in insects, and the collapse and regrowth of the reproductive system that drives breeding seasons in mammals and birds. Although research on photoperiodic time measurement originally integrated work on plants and animals, recent work has focused more narrowly and separately on plants, invertebrates, or vertebrates. As the fields have become more specialized there has been less interaction across the broader field of photoperiodism. As a result, researchers in each area often needlessly repeat both theoretical and experimental work. For example, understanding that there are genetically distinct morphs among species that, depending on latitude, respond to different critical photoperiods was discovered separately in plants, invertebrates, and vertebrates over the course of 20 years. However, over the past decade, intense work on daily and seasonal rhythms in fruit flies, mustard plants, and hamsters and mice, has led to remarkable progress in understanding the phenomenology, as well as the molecular and genetic mechanisms underlying circadian rhythms and clocks. This book was developed to further this type of cooperation among scientists from all related disciplines. It brings together leading researchers working on photoperiodic timing of seasonal adaptations in plants, invertebrates, and vertebrates. Each of its three sections begins with an introduction by the section editor, and at the end of the book, the section editors present a synthesis of common themes in photoperiodism, as well as discuss similarities and differences in approaches to the study of photoperiodism, and future directions for research on photoperiodic time measurement.
Publisher: Oxford University Press
ISBN: 0199714630
Category : Science
Languages : en
Pages : 596
Book Description
Life evolves in a cyclic environment, and to be successful, organisms must adapt not only to their spatial habitat, but also to their temporal habitat. How do plants and animals determine the time of year so they can anticipate seasonal changes in their habitats? In most cases, day length, or photoperiod, acts as the principal external cue for determining seasonal activity. For organisms not living at the bottom of the ocean or deep in a cave, day follows night, and the length of the day changes predictably throughout the year. These changes in photoperiod provide the most accurate signal for predicting upcoming seasonal conditions. Measuring day length allows plants and animals to anticipate and adapt to seasonal changes in their environments in order to optimally time key developmental events including seasonal growth and flowering of plants, annual bouts of reproduction, dormancy and migration in insects, and the collapse and regrowth of the reproductive system that drives breeding seasons in mammals and birds. Although research on photoperiodic time measurement originally integrated work on plants and animals, recent work has focused more narrowly and separately on plants, invertebrates, or vertebrates. As the fields have become more specialized there has been less interaction across the broader field of photoperiodism. As a result, researchers in each area often needlessly repeat both theoretical and experimental work. For example, understanding that there are genetically distinct morphs among species that, depending on latitude, respond to different critical photoperiods was discovered separately in plants, invertebrates, and vertebrates over the course of 20 years. However, over the past decade, intense work on daily and seasonal rhythms in fruit flies, mustard plants, and hamsters and mice, has led to remarkable progress in understanding the phenomenology, as well as the molecular and genetic mechanisms underlying circadian rhythms and clocks. This book was developed to further this type of cooperation among scientists from all related disciplines. It brings together leading researchers working on photoperiodic timing of seasonal adaptations in plants, invertebrates, and vertebrates. Each of its three sections begins with an introduction by the section editor, and at the end of the book, the section editors present a synthesis of common themes in photoperiodism, as well as discuss similarities and differences in approaches to the study of photoperiodism, and future directions for research on photoperiodic time measurement.
Neuroendocrine Clocks and Calendars
Author: Francis J. P. Ebling
Publisher: Springer Nature
ISBN: 3030556433
Category : Medical
Languages : en
Pages : 253
Book Description
This book explores how daily and seasonal rhythmicity is generated, how these rhythms are synchronised by our environment, and how they regulate the neuroendocrine systems that impact our physiology and behaviour. The constraints of surviving in a seasonal environment have shaped human evolution and migration, have shaped our societies and cultures, and continue to influence our everyday lives, health and wellbeing. Identifying the mechanisms whereby seasonal rhythmicity is generated and regulates the brain and body is not only important for understanding the natural world and relevant to animal production, it also offers many insights into the human condition. Each chapter is written by an international expert in the field of chronobiology. A historical perspective on how research into photoperiodism and rhythmicity progressed is initially provided, but the main focus of this book is on the remarkable studies in the last few decades that have unravelled the molecular and cellular machinery underpinning circadian and circannual timing. Topics covered include the role of melatonin in communicating seasonal information to the brain and pituitary gland, the neuroanatomical pathways in mammals, birds and fish by which changes in photoperiod reach the hypothalamus, the role of glial cells (tanycytes) and thyroid hormone in seasonal rhythmicity, neuroplasticity across seasons, effects of changing day length on mood, regulation of “clock“ gene expression, and the role of the suprachiasmatic nucleus. This book will appeal to all students and researchers who wish to learn about current and past research on daily and seasonal rhythmicity. This is the tenth volume in the International Neuroendocrine Federation (INF) Masterclass in Neuroendocrinology series (Volumes 1-7 published by Wiley) that aims to illustrate highest standards and encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology.
Publisher: Springer Nature
ISBN: 3030556433
Category : Medical
Languages : en
Pages : 253
Book Description
This book explores how daily and seasonal rhythmicity is generated, how these rhythms are synchronised by our environment, and how they regulate the neuroendocrine systems that impact our physiology and behaviour. The constraints of surviving in a seasonal environment have shaped human evolution and migration, have shaped our societies and cultures, and continue to influence our everyday lives, health and wellbeing. Identifying the mechanisms whereby seasonal rhythmicity is generated and regulates the brain and body is not only important for understanding the natural world and relevant to animal production, it also offers many insights into the human condition. Each chapter is written by an international expert in the field of chronobiology. A historical perspective on how research into photoperiodism and rhythmicity progressed is initially provided, but the main focus of this book is on the remarkable studies in the last few decades that have unravelled the molecular and cellular machinery underpinning circadian and circannual timing. Topics covered include the role of melatonin in communicating seasonal information to the brain and pituitary gland, the neuroanatomical pathways in mammals, birds and fish by which changes in photoperiod reach the hypothalamus, the role of glial cells (tanycytes) and thyroid hormone in seasonal rhythmicity, neuroplasticity across seasons, effects of changing day length on mood, regulation of “clock“ gene expression, and the role of the suprachiasmatic nucleus. This book will appeal to all students and researchers who wish to learn about current and past research on daily and seasonal rhythmicity. This is the tenth volume in the International Neuroendocrine Federation (INF) Masterclass in Neuroendocrinology series (Volumes 1-7 published by Wiley) that aims to illustrate highest standards and encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology.