Bayesian Models of Perception and Action

Bayesian Models of Perception and Action PDF Author: Wei Ji Ma
Publisher: MIT Press
ISBN: 0262372827
Category : Science
Languages : en
Pages : 409

Get Book Here

Book Description
An accessible introduction to constructing and interpreting Bayesian models of perceptual decision-making and action. Many forms of perception and action can be mathematically modeled as probabilistic—or Bayesian—inference, a method used to draw conclusions from uncertain evidence. According to these models, the human mind behaves like a capable data scientist or crime scene investigator when dealing with noisy and ambiguous data. This textbook provides an approachable introduction to constructing and reasoning with probabilistic models of perceptual decision-making and action. Featuring extensive examples and illustrations, Bayesian Models of Perception and Action is the first textbook to teach this widely used computational framework to beginners. Introduces Bayesian models of perception and action, which are central to cognitive science and neuroscience Beginner-friendly pedagogy includes intuitive examples, daily life illustrations, and gradual progression of complex concepts Broad appeal for students across psychology, neuroscience, cognitive science, linguistics, and mathematics Written by leaders in the field of computational approaches to mind and brain

Bayesian Models of Perception and Action

Bayesian Models of Perception and Action PDF Author: Wei Ji Ma
Publisher: MIT Press
ISBN: 0262372827
Category : Science
Languages : en
Pages : 409

Get Book Here

Book Description
An accessible introduction to constructing and interpreting Bayesian models of perceptual decision-making and action. Many forms of perception and action can be mathematically modeled as probabilistic—or Bayesian—inference, a method used to draw conclusions from uncertain evidence. According to these models, the human mind behaves like a capable data scientist or crime scene investigator when dealing with noisy and ambiguous data. This textbook provides an approachable introduction to constructing and reasoning with probabilistic models of perceptual decision-making and action. Featuring extensive examples and illustrations, Bayesian Models of Perception and Action is the first textbook to teach this widely used computational framework to beginners. Introduces Bayesian models of perception and action, which are central to cognitive science and neuroscience Beginner-friendly pedagogy includes intuitive examples, daily life illustrations, and gradual progression of complex concepts Broad appeal for students across psychology, neuroscience, cognitive science, linguistics, and mathematics Written by leaders in the field of computational approaches to mind and brain

Surfing Uncertainty

Surfing Uncertainty PDF Author: Andy Clark
Publisher: Oxford University Press, USA
ISBN: 0190217014
Category : Medical
Languages : en
Pages : 425

Get Book Here

Book Description
Exciting new theories in neuroscience, psychology, and artificial intelligence are revealing minds like ours as predictive minds, forever trying to guess the incoming streams of sensory stimulation before they arrive. In this up-to-the-minute treatment, philosopher and cognitive scientist Andy Clark explores new ways of thinking about perception, action, and the embodied mind.

Bayesian Statistics for Experimental Scientists

Bayesian Statistics for Experimental Scientists PDF Author: Richard A. Chechile
Publisher: MIT Press
ISBN: 0262360705
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
An introduction to the Bayesian approach to statistical inference that demonstrates its superiority to orthodox frequentist statistical analysis. This book offers an introduction to the Bayesian approach to statistical inference, with a focus on nonparametric and distribution-free methods. It covers not only well-developed methods for doing Bayesian statistics but also novel tools that enable Bayesian statistical analyses for cases that previously did not have a full Bayesian solution. The book's premise is that there are fundamental problems with orthodox frequentist statistical analyses that distort the scientific process. Side-by-side comparisons of Bayesian and frequentist methods illustrate the mismatch between the needs of experimental scientists in making inferences from data and the properties of the standard tools of classical statistics.

Active Inference

Active Inference PDF Author: Thomas Parr
Publisher: MIT Press
ISBN: 0262362287
Category : Science
Languages : en
Pages : 313

Get Book Here

Book Description
The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.

The Oxford Handbook of Philosophy of Perception

The Oxford Handbook of Philosophy of Perception PDF Author: Mohan Matthen
Publisher:
ISBN: 0199600473
Category : Philosophy
Languages : en
Pages : 945

Get Book Here

Book Description
The Oxford Handbook of the Philosophy of Perception is a survey by leading philosophical thinkers of contemporary issues and new thinking in philosophy of perception. It includes sections on the history of the subject, introductions to contemporary issues in the epistemology, ontology and aesthetics of perception, treatments of the individual sense modalities and of the things we perceive by means of them, and a consideration of how perceptual information is integrated and consolidated. New analytic tools and applications to other areas of philosophy are discussed in depth. Each of the forty-five entries is written by a leading expert, some collaborating with younger figures; each seeks to introduce the reader to a broad range of issues. All contain new ideas on the topics covered; together they demonstrate the vigour and innovative zeal of a young field. The book is accessible to anybody who has an intellectual interest in issues concerning perception.

Sensory Cue Integration

Sensory Cue Integration PDF Author: Julia Trommershauser
Publisher: Oxford University Press
ISBN: 019987476X
Category : Psychology
Languages : en
Pages : 461

Get Book Here

Book Description
This book is concerned with sensory cue integration both within and between sensory modalities, and focuses on the emerging way of thinking about cue combination in terms of uncertainty. These probabilistic approaches derive from the realization that our sensors are noisy and moreover are often affected by ambiguity. For example, mechanoreceptor outputs are variable and they cannot distinguish if a perceived force is caused by the weight of an object or by force we are producing ourselves. The probabilistic approaches elaborated in this book aim at formalizing the uncertainty of cues. They describe cue combination as the nervous system's attempt to minimize uncertainty in its estimates and to choose successful actions. Some computational approaches described in the chapters of this book are concerned with the application of such statistical ideas to real-world cue-combination problems. Others ask how uncertainty may be represented in the nervous system and used for cue combination. Importantly, across behavioral, electrophysiological and theoretical approaches, Bayesian statistics is emerging as a common language in which cue-combination problems can be expressed.

Red Tape Holds Up New Bridge, and More Flubs from the Nation's Press

Red Tape Holds Up New Bridge, and More Flubs from the Nation's Press PDF Author: Gloria Cooper
Publisher: TarcherPerigee
ISBN:
Category : Fiction
Languages : en
Pages : 88

Get Book Here

Book Description
Featuring selections from The Lower case, the best-read page of the Columbia Journalism Review, Red Tape Holds Up New Bridge gives the Fourth Estate the once-over and comes up with non-stop fun.

The Mind's Arrows

The Mind's Arrows PDF Author: Clark N. Glymour
Publisher: MIT Press
ISBN: 9780262072205
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
This title provides an introduction to assumptions, algorithms, and techniques of causal Bayes nets and graphical causal models in the context of psychological examples. It demonstrates their potential as a powerful tool for guiding experimental inquiry.

Perception-Action Cycle

Perception-Action Cycle PDF Author: Vassilis Cutsuridis
Publisher: Springer Science & Business Media
ISBN: 1441914528
Category : Medical
Languages : en
Pages : 785

Get Book Here

Book Description
The perception-action cycle is the circular flow of information that takes place between the organism and its environment in the course of a sensory-guided sequence of behaviour towards a goal. Each action causes changes in the environment that are analyzed bottom-up through the perceptual hierarchy and lead to the processing of further action, top-down through the executive hierarchy, toward motor effectors. These actions cause new changes that are analyzed and lead to new action, and so the cycle continues. The Perception-action cycle: Models, architectures and hardware book provides focused and easily accessible reviews of various aspects of the perception-action cycle. It is an unparalleled resource of information that will be an invaluable companion to anyone in constructing and developing models, algorithms and hardware implementations of autonomous machines empowered with cognitive capabilities. The book is divided into three main parts. In the first part, leading computational neuroscientists present brain-inspired models of perception, attention, cognitive control, decision making, conflict resolution and monitoring, knowledge representation and reasoning, learning and memory, planning and action, and consciousness grounded on experimental data. In the second part, architectures, algorithms, and systems with cognitive capabilities and minimal guidance from the brain, are discussed. These architectures, algorithms, and systems are inspired from the areas of cognitive science, computer vision, robotics, information theory, machine learning, computer agents and artificial intelligence. In the third part, the analysis, design and implementation of hardware systems with robust cognitive abilities from the areas of mechatronics, sensing technology, sensor fusion, smart sensor networks, control rules, controllability, stability, model/knowledge representation, and reasoning are discussed.

Probabilistic Models of the Brain

Probabilistic Models of the Brain PDF Author: Rajesh P.N. Rao
Publisher: MIT Press
ISBN: 9780262264327
Category : Medical
Languages : en
Pages : 348

Get Book Here

Book Description
A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.