Author: Russell G. Almond
Publisher: Springer
ISBN: 1493921258
Category : Social Science
Languages : en
Pages : 678
Book Description
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as an integral component of a principled design process, and illustrates the ideas with an in-depth look at the BioMass project: An interactive, standards-based, web-delivered demonstration assessment of science inquiry in genetics. This book is both a resource for professionals interested in assessment and advanced students. Its clear exposition, worked-through numerical examples, and demonstrations from real and didactic applications provide invaluable illustrations of how to use Bayes nets in educational assessment. Exercises follow each chapter, and the online companion site provides a glossary, data sets and problem setups, and links to computational resources.
Bayes Nets in Educational Assessment
Author:
Publisher:
ISBN:
Category : Educational evaluation
Languages : en
Pages : 70
Book Description
Publisher:
ISBN:
Category : Educational evaluation
Languages : en
Pages : 70
Book Description
Bayesian Networks in Educational Assessment
Author: Russell G. Almond
Publisher: Springer
ISBN: 1493921258
Category : Social Science
Languages : en
Pages : 678
Book Description
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as an integral component of a principled design process, and illustrates the ideas with an in-depth look at the BioMass project: An interactive, standards-based, web-delivered demonstration assessment of science inquiry in genetics. This book is both a resource for professionals interested in assessment and advanced students. Its clear exposition, worked-through numerical examples, and demonstrations from real and didactic applications provide invaluable illustrations of how to use Bayes nets in educational assessment. Exercises follow each chapter, and the online companion site provides a glossary, data sets and problem setups, and links to computational resources.
Publisher: Springer
ISBN: 1493921258
Category : Social Science
Languages : en
Pages : 678
Book Description
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as an integral component of a principled design process, and illustrates the ideas with an in-depth look at the BioMass project: An interactive, standards-based, web-delivered demonstration assessment of science inquiry in genetics. This book is both a resource for professionals interested in assessment and advanced students. Its clear exposition, worked-through numerical examples, and demonstrations from real and didactic applications provide invaluable illustrations of how to use Bayes nets in educational assessment. Exercises follow each chapter, and the online companion site provides a glossary, data sets and problem setups, and links to computational resources.
Knowing What Students Know
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309293227
Category : Education
Languages : en
Pages : 383
Book Description
Education is a hot topic. From the stage of presidential debates to tonight's dinner table, it is an issue that most Americans are deeply concerned about. While there are many strategies for improving the educational process, we need a way to find out what works and what doesn't work as well. Educational assessment seeks to determine just how well students are learning and is an integral part of our quest for improved education. The nation is pinning greater expectations on educational assessment than ever before. We look to these assessment tools when documenting whether students and institutions are truly meeting education goals. But we must stop and ask a crucial question: What kind of assessment is most effective? At a time when traditional testing is subject to increasing criticism, research suggests that new, exciting approaches to assessment may be on the horizon. Advances in the sciences of how people learn and how to measure such learning offer the hope of developing new kinds of assessments-assessments that help students succeed in school by making as clear as possible the nature of their accomplishments and the progress of their learning. Knowing What Students Know essentially explains how expanding knowledge in the scientific fields of human learning and educational measurement can form the foundations of an improved approach to assessment. These advances suggest ways that the targets of assessment-what students know and how well they know it-as well as the methods used to make inferences about student learning can be made more valid and instructionally useful. Principles for designing and using these new kinds of assessments are presented, and examples are used to illustrate the principles. Implications for policy, practice, and research are also explored. With the promise of a productive research-based approach to assessment of student learning, Knowing What Students Know will be important to education administrators, assessment designers, teachers and teacher educators, and education advocates.
Publisher: National Academies Press
ISBN: 0309293227
Category : Education
Languages : en
Pages : 383
Book Description
Education is a hot topic. From the stage of presidential debates to tonight's dinner table, it is an issue that most Americans are deeply concerned about. While there are many strategies for improving the educational process, we need a way to find out what works and what doesn't work as well. Educational assessment seeks to determine just how well students are learning and is an integral part of our quest for improved education. The nation is pinning greater expectations on educational assessment than ever before. We look to these assessment tools when documenting whether students and institutions are truly meeting education goals. But we must stop and ask a crucial question: What kind of assessment is most effective? At a time when traditional testing is subject to increasing criticism, research suggests that new, exciting approaches to assessment may be on the horizon. Advances in the sciences of how people learn and how to measure such learning offer the hope of developing new kinds of assessments-assessments that help students succeed in school by making as clear as possible the nature of their accomplishments and the progress of their learning. Knowing What Students Know essentially explains how expanding knowledge in the scientific fields of human learning and educational measurement can form the foundations of an improved approach to assessment. These advances suggest ways that the targets of assessment-what students know and how well they know it-as well as the methods used to make inferences about student learning can be made more valid and instructionally useful. Principles for designing and using these new kinds of assessments are presented, and examples are used to illustrate the principles. Implications for policy, practice, and research are also explored. With the promise of a productive research-based approach to assessment of student learning, Knowing What Students Know will be important to education administrators, assessment designers, teachers and teacher educators, and education advocates.
Intelligent Tutoring Systems
Author: Beverly Woolf
Publisher: Springer
ISBN: 3540691324
Category : Education
Languages : en
Pages : 852
Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Intelligent Tutoring Systems, ITS 2008, held in Montreal, Canada, in June 2008. The 63 revised full papers and 61 poster papers presented together with abstracts of 5 keynote talks were carefully reviewed and selected from 207 submissions. The papers are organized in topical sections on emotion and affect, tutor evaluation, student modeling, machine learning, authoring tools , tutor feedback and intervention, data mining, e-learning and Web-based ITS, natural language techniques and dialogue, narrative tutors and games, semantic Web and ontology, cognitive models, and collaboration.
Publisher: Springer
ISBN: 3540691324
Category : Education
Languages : en
Pages : 852
Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Intelligent Tutoring Systems, ITS 2008, held in Montreal, Canada, in June 2008. The 63 revised full papers and 61 poster papers presented together with abstracts of 5 keynote talks were carefully reviewed and selected from 207 submissions. The papers are organized in topical sections on emotion and affect, tutor evaluation, student modeling, machine learning, authoring tools , tutor feedback and intervention, data mining, e-learning and Web-based ITS, natural language techniques and dialogue, narrative tutors and games, semantic Web and ontology, cognitive models, and collaboration.
Learning Bayesian Networks
Author: Richard E. Neapolitan
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 704
Book Description
In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 704
Book Description
In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.
Bayesian Psychometric Modeling
Author: Roy Levy
Publisher: CRC Press
ISBN: 131535697X
Category : Mathematics
Languages : en
Pages : 434
Book Description
A Single Cohesive Framework of Tools and Procedures for Psychometrics and Assessment Bayesian Psychometric Modeling presents a unified Bayesian approach across traditionally separate families of psychometric models. It shows that Bayesian techniques, as alternatives to conventional approaches, offer distinct and profound advantages in achieving many goals of psychometrics. Adopting a Bayesian approach can aid in unifying seemingly disparate—and sometimes conflicting—ideas and activities in psychometrics. This book explains both how to perform psychometrics using Bayesian methods and why many of the activities in psychometrics align with Bayesian thinking. The first part of the book introduces foundational principles and statistical models, including conceptual issues, normal distribution models, Markov chain Monte Carlo estimation, and regression. Focusing more directly on psychometrics, the second part covers popular psychometric models, including classical test theory, factor analysis, item response theory, latent class analysis, and Bayesian networks. Throughout the book, procedures are illustrated using examples primarily from educational assessments. A supplementary website provides the datasets, WinBUGS code, R code, and Netica files used in the examples.
Publisher: CRC Press
ISBN: 131535697X
Category : Mathematics
Languages : en
Pages : 434
Book Description
A Single Cohesive Framework of Tools and Procedures for Psychometrics and Assessment Bayesian Psychometric Modeling presents a unified Bayesian approach across traditionally separate families of psychometric models. It shows that Bayesian techniques, as alternatives to conventional approaches, offer distinct and profound advantages in achieving many goals of psychometrics. Adopting a Bayesian approach can aid in unifying seemingly disparate—and sometimes conflicting—ideas and activities in psychometrics. This book explains both how to perform psychometrics using Bayesian methods and why many of the activities in psychometrics align with Bayesian thinking. The first part of the book introduces foundational principles and statistical models, including conceptual issues, normal distribution models, Markov chain Monte Carlo estimation, and regression. Focusing more directly on psychometrics, the second part covers popular psychometric models, including classical test theory, factor analysis, item response theory, latent class analysis, and Bayesian networks. Throughout the book, procedures are illustrated using examples primarily from educational assessments. A supplementary website provides the datasets, WinBUGS code, R code, and Netica files used in the examples.
Handbook of Test Development
Author: Thomas M. Haladyna
Publisher: Routledge
ISBN: 1135283370
Category : Education
Languages : en
Pages : 1037
Book Description
Despite the fact that test development is a growth industry that cuts across all levels of education and all the professions, there has never been a comprehensive, research-oriented Handbook to which everyone (developers and consumers) can turn for guidance. That is the mission of this book. The Handbook of Test Development brings together well-known scholars and test-development practitioners to present chapters on all aspects of test development. Each chapter contributor is not only a recognized expert with an academic and research background in their designated topic, each one has also had hands-on experience in various aspects of test development. This thirty two-chapter volume is organized into six sections: foundations, content, item development, test design, test production and administration, and post-test activities. The Handbook provides extensive treatment of such important but unrecognized topics as contracting for testing services, item banking, designing tests for small testing program, and writing technical reports. The Handbook is based on the Standards for Educational and Psychological Testing, which serve as the foundation for sound test development practice. These chapters also suggest best test development practices and highlight methods to improve test validity evidence. This book is appropriate for graduate courses and seminars that deal with test development and usage, professional testing services and credentialing agencies, state and local boards of education, and academic libraries serving these groups.
Publisher: Routledge
ISBN: 1135283370
Category : Education
Languages : en
Pages : 1037
Book Description
Despite the fact that test development is a growth industry that cuts across all levels of education and all the professions, there has never been a comprehensive, research-oriented Handbook to which everyone (developers and consumers) can turn for guidance. That is the mission of this book. The Handbook of Test Development brings together well-known scholars and test-development practitioners to present chapters on all aspects of test development. Each chapter contributor is not only a recognized expert with an academic and research background in their designated topic, each one has also had hands-on experience in various aspects of test development. This thirty two-chapter volume is organized into six sections: foundations, content, item development, test design, test production and administration, and post-test activities. The Handbook provides extensive treatment of such important but unrecognized topics as contracting for testing services, item banking, designing tests for small testing program, and writing technical reports. The Handbook is based on the Standards for Educational and Psychological Testing, which serve as the foundation for sound test development practice. These chapters also suggest best test development practices and highlight methods to improve test validity evidence. This book is appropriate for graduate courses and seminars that deal with test development and usage, professional testing services and credentialing agencies, state and local boards of education, and academic libraries serving these groups.
Innovative Approaches for Learning and Knowledge Sharing
Author: Wolfgang Nejdl
Publisher: Springer Science & Business Media
ISBN: 3540457771
Category : Education
Languages : en
Pages : 737
Book Description
This book constitutes the refereed proceedings of the First European Conference on Technology Enhanced Learning, EC-TEL 2006. The book presents 32 revised full papers, 13 revised short papers and 31 poster papers together with 2 keynote talks. Topics addressed include collaborative learning, personalized learning, multimedia content, semantic web, metadata and learning, workplace learning, learning repositories and infrastructures for learning, as well as experience reports, assessment, and case studies, and more.
Publisher: Springer Science & Business Media
ISBN: 3540457771
Category : Education
Languages : en
Pages : 737
Book Description
This book constitutes the refereed proceedings of the First European Conference on Technology Enhanced Learning, EC-TEL 2006. The book presents 32 revised full papers, 13 revised short papers and 31 poster papers together with 2 keynote talks. Topics addressed include collaborative learning, personalized learning, multimedia content, semantic web, metadata and learning, workplace learning, learning repositories and infrastructures for learning, as well as experience reports, assessment, and case studies, and more.
Computational Psychometrics: New Methodologies for a New Generation of Digital Learning and Assessment
Author: Alina A. von Davier
Publisher: Springer Nature
ISBN: 3030743942
Category : Education
Languages : en
Pages : 265
Book Description
This book defines and describes a new discipline, named “computational psychometrics,” from the perspective of new methodologies for handling complex data from digital learning and assessment. The editors and the contributing authors discuss how new technology drastically increases the possibilities for the design and administration of learning and assessment systems, and how doing so significantly increases the variety, velocity, and volume of the resulting data. Then they introduce methods and strategies to address the new challenges, ranging from evidence identification and data modeling to the assessment and prediction of learners’ performance in complex settings, as in collaborative tasks, game/simulation-based tasks, and multimodal learning and assessment tasks. Computational psychometrics has thus been defined as a blend of theory-based psychometrics and data-driven approaches from machine learning, artificial intelligence, and data science. All these together provide a better methodological framework for analysing complex data from digital learning and assessments. The term “computational” has been widely adopted by many other areas, as with computational statistics, computational linguistics, and computational economics. In those contexts, “computational” has a meaning similar to the one proposed in this book: a data-driven and algorithm-focused perspective on foundations and theoretical approaches established previously, now extended and, when necessary, reconceived. This interdisciplinarity is already a proven success in many disciplines, from personalized medicine that uses computational statistics to personalized learning that uses, well, computational psychometrics. We expect that this volume will be of interest not just within but beyond the psychometric community. In this volume, experts in psychometrics, machine learning, artificial intelligence, data science and natural language processing illustrate their work, showing how the interdisciplinary expertise of each researcher blends into a coherent methodological framework to deal with complex data from complex virtual interfaces. In the chapters focusing on methodologies, the authors use real data examples to demonstrate how to implement the new methods in practice. The corresponding programming codes in R and Python have been included as snippets in the book and are also available in fuller form in the GitHub code repository that accompanies the book.
Publisher: Springer Nature
ISBN: 3030743942
Category : Education
Languages : en
Pages : 265
Book Description
This book defines and describes a new discipline, named “computational psychometrics,” from the perspective of new methodologies for handling complex data from digital learning and assessment. The editors and the contributing authors discuss how new technology drastically increases the possibilities for the design and administration of learning and assessment systems, and how doing so significantly increases the variety, velocity, and volume of the resulting data. Then they introduce methods and strategies to address the new challenges, ranging from evidence identification and data modeling to the assessment and prediction of learners’ performance in complex settings, as in collaborative tasks, game/simulation-based tasks, and multimodal learning and assessment tasks. Computational psychometrics has thus been defined as a blend of theory-based psychometrics and data-driven approaches from machine learning, artificial intelligence, and data science. All these together provide a better methodological framework for analysing complex data from digital learning and assessments. The term “computational” has been widely adopted by many other areas, as with computational statistics, computational linguistics, and computational economics. In those contexts, “computational” has a meaning similar to the one proposed in this book: a data-driven and algorithm-focused perspective on foundations and theoretical approaches established previously, now extended and, when necessary, reconceived. This interdisciplinarity is already a proven success in many disciplines, from personalized medicine that uses computational statistics to personalized learning that uses, well, computational psychometrics. We expect that this volume will be of interest not just within but beyond the psychometric community. In this volume, experts in psychometrics, machine learning, artificial intelligence, data science and natural language processing illustrate their work, showing how the interdisciplinary expertise of each researcher blends into a coherent methodological framework to deal with complex data from complex virtual interfaces. In the chapters focusing on methodologies, the authors use real data examples to demonstrate how to implement the new methods in practice. The corresponding programming codes in R and Python have been included as snippets in the book and are also available in fuller form in the GitHub code repository that accompanies the book.
Agent-Based Tutoring Systems by Cognitive and Affective Modeling
Author: Viccari, Rosa Maria
Publisher: IGI Global
ISBN: 1599047705
Category : Education
Languages : en
Pages : 392
Book Description
"This book presents a modern view of intelligent tutoring, focusing mainly on the conception of these systems according to a multi-agent approach and on the affective and cognitive modeling of the student in this kind of educational environment"--Provided by publisher.
Publisher: IGI Global
ISBN: 1599047705
Category : Education
Languages : en
Pages : 392
Book Description
"This book presents a modern view of intelligent tutoring, focusing mainly on the conception of these systems according to a multi-agent approach and on the affective and cognitive modeling of the student in this kind of educational environment"--Provided by publisher.