Author: Michael C. Gemignani
Publisher: Courier Corporation
ISBN: 0486435067
Category : Mathematics
Languages : en
Pages : 290
Book Description
This text emphasizes logic and the theory of sets. Students who take no further courses in the field will find it an excellent resource for developing an appreciation for the nature of mathematics. Others will discover the foundations for future studies — set theory, logic, counting, numbers, functions, and more. 1968 edition. 43 figures. 25 tables.
Basic Concepts of Mathematics and Logic
Author: Michael C. Gemignani
Publisher: Courier Corporation
ISBN: 0486435067
Category : Mathematics
Languages : en
Pages : 290
Book Description
This text emphasizes logic and the theory of sets. Students who take no further courses in the field will find it an excellent resource for developing an appreciation for the nature of mathematics. Others will discover the foundations for future studies — set theory, logic, counting, numbers, functions, and more. 1968 edition. 43 figures. 25 tables.
Publisher: Courier Corporation
ISBN: 0486435067
Category : Mathematics
Languages : en
Pages : 290
Book Description
This text emphasizes logic and the theory of sets. Students who take no further courses in the field will find it an excellent resource for developing an appreciation for the nature of mathematics. Others will discover the foundations for future studies — set theory, logic, counting, numbers, functions, and more. 1968 edition. 43 figures. 25 tables.
Mathematical Logic and Formalized Theories
Author: Robert L. Rogers
Publisher: Elsevier
ISBN: 1483257975
Category : Mathematics
Languages : en
Pages : 248
Book Description
Mathematical Logic and Formalized Theories: A Survey of Basic Concepts and Results focuses on basic concepts and results of mathematical logic and the study of formalized theories. The manuscript first elaborates on sentential logic and first-order predicate logic. Discussions focus on first-order predicate logic with identity and operation symbols, first-order predicate logic with identity, completeness theorems, elementary theories, deduction theorem, interpretations, truth, and validity, sentential connectives, and tautologies. The text then tackles second-order predicate logic, as well as second-order theories, theory of definition, and second-order predicate logic F2. The publication takes a look at natural and real numbers, incompleteness, and the axiomatic set theory. Topics include paradoxes, recursive functions and relations, Gödel's first incompleteness theorem, axiom of choice, metamathematics of R and elementary algebra, and metamathematics of N. The book is a valuable reference for mathematicians and researchers interested in mathematical logic and formalized theories.
Publisher: Elsevier
ISBN: 1483257975
Category : Mathematics
Languages : en
Pages : 248
Book Description
Mathematical Logic and Formalized Theories: A Survey of Basic Concepts and Results focuses on basic concepts and results of mathematical logic and the study of formalized theories. The manuscript first elaborates on sentential logic and first-order predicate logic. Discussions focus on first-order predicate logic with identity and operation symbols, first-order predicate logic with identity, completeness theorems, elementary theories, deduction theorem, interpretations, truth, and validity, sentential connectives, and tautologies. The text then tackles second-order predicate logic, as well as second-order theories, theory of definition, and second-order predicate logic F2. The publication takes a look at natural and real numbers, incompleteness, and the axiomatic set theory. Topics include paradoxes, recursive functions and relations, Gödel's first incompleteness theorem, axiom of choice, metamathematics of R and elementary algebra, and metamathematics of N. The book is a valuable reference for mathematicians and researchers interested in mathematical logic and formalized theories.
Basic Concepts in Modern Mathematics
Author: John Edward Hafstrom
Publisher: Courier Corporation
ISBN: 0486497291
Category : Mathematics
Languages : en
Pages : 209
Book Description
An in-depth overview of some of the most readily applicable essentials of modern mathematics, this concise volume is geared toward undergraduates of all backgrounds as well as future math majors. Topics include the natural numbers; sets, variables, and statement forms; mappings and operations; groups; relations and partitions; integers; and rational and real numbers. 1961 edition.
Publisher: Courier Corporation
ISBN: 0486497291
Category : Mathematics
Languages : en
Pages : 209
Book Description
An in-depth overview of some of the most readily applicable essentials of modern mathematics, this concise volume is geared toward undergraduates of all backgrounds as well as future math majors. Topics include the natural numbers; sets, variables, and statement forms; mappings and operations; groups; relations and partitions; integers; and rational and real numbers. 1961 edition.
Basic Mathematics
Author: Serge Lang
Publisher:
ISBN: 9783540967873
Category : Mathematics
Languages : en
Pages : 475
Book Description
Publisher:
ISBN: 9783540967873
Category : Mathematics
Languages : en
Pages : 475
Book Description
Mathematics and Logic
Author: Mark Kac
Publisher: Courier Corporation
ISBN: 0486670856
Category : Philosophy
Languages : en
Pages : 189
Book Description
Fascinating study of the origin and nature of mathematical thought, including relation of mathematics and science, 20th-century developments, impact of computers, and more.Includes 34 illustrations. 1968 edition."
Publisher: Courier Corporation
ISBN: 0486670856
Category : Philosophy
Languages : en
Pages : 189
Book Description
Fascinating study of the origin and nature of mathematical thought, including relation of mathematics and science, 20th-century developments, impact of computers, and more.Includes 34 illustrations. 1968 edition."
Mathematical Logic
Author: Roman Kossak
Publisher: Springer
ISBN: 3319972987
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Publisher: Springer
ISBN: 3319972987
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Modern Mathematical Logic
Author: Joseph Mileti
Publisher: Cambridge University Press
ISBN: 1108833144
Category : Mathematics
Languages : en
Pages : 517
Book Description
This textbook gives a comprehensive and modern introduction to mathematical logic at the upper-undergraduate and beginning graduate level.
Publisher: Cambridge University Press
ISBN: 1108833144
Category : Mathematics
Languages : en
Pages : 517
Book Description
This textbook gives a comprehensive and modern introduction to mathematical logic at the upper-undergraduate and beginning graduate level.
Mathematical Logic
Author: Joseph R. Shoenfield
Publisher: CRC Press
ISBN: 135143330X
Category : Mathematics
Languages : en
Pages : 351
Book Description
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
Publisher: CRC Press
ISBN: 135143330X
Category : Mathematics
Languages : en
Pages : 351
Book Description
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
Logic of Mathematics
Author: Zofia Adamowicz
Publisher: John Wiley & Sons
ISBN: 1118030796
Category : Mathematics
Languages : en
Pages : 276
Book Description
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
Publisher: John Wiley & Sons
ISBN: 1118030796
Category : Mathematics
Languages : en
Pages : 276
Book Description
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
Basic Concepts of Mathematics
Author: Elias Zakon
Publisher: The Trillia Group
ISBN: 1931705003
Category : Mathematics
Languages : en
Pages : 208
Book Description
Publisher: The Trillia Group
ISBN: 1931705003
Category : Mathematics
Languages : en
Pages : 208
Book Description