Author: Jiri Lebl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781718862401
Category :
Languages : en
Pages : 282
Book Description
Version 5.0. A first course in rigorous mathematical analysis. Covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, sequences of functions, and metric spaces. Originally developed to teach Math 444 at University of Illinois at Urbana-Champaign and later enhanced for Math 521 at University of Wisconsin-Madison and Math 4143 at Oklahoma State University. The first volume is either a stand-alone one-semester course or the first semester of a year-long course together with the second volume. It can be used anywhere from a semester early introduction to analysis for undergraduates (especially chapters 1-5) to a year-long course for advanced undergraduates and masters-level students. See http://www.jirka.org/ra/ Table of Contents (of this volume I): Introduction 1. Real Numbers 2. Sequences and Series 3. Continuous Functions 4. The Derivative 5. The Riemann Integral 6. Sequences of Functions 7. Metric Spaces This first volume contains what used to be the entire book "Basic Analysis" before edition 5, that is chapters 1-7. Second volume contains chapters on multidimensional differential and integral calculus and further topics on approximation of functions.
Basic Analysis I
Author: Jiri Lebl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781718862401
Category :
Languages : en
Pages : 282
Book Description
Version 5.0. A first course in rigorous mathematical analysis. Covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, sequences of functions, and metric spaces. Originally developed to teach Math 444 at University of Illinois at Urbana-Champaign and later enhanced for Math 521 at University of Wisconsin-Madison and Math 4143 at Oklahoma State University. The first volume is either a stand-alone one-semester course or the first semester of a year-long course together with the second volume. It can be used anywhere from a semester early introduction to analysis for undergraduates (especially chapters 1-5) to a year-long course for advanced undergraduates and masters-level students. See http://www.jirka.org/ra/ Table of Contents (of this volume I): Introduction 1. Real Numbers 2. Sequences and Series 3. Continuous Functions 4. The Derivative 5. The Riemann Integral 6. Sequences of Functions 7. Metric Spaces This first volume contains what used to be the entire book "Basic Analysis" before edition 5, that is chapters 1-7. Second volume contains chapters on multidimensional differential and integral calculus and further topics on approximation of functions.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781718862401
Category :
Languages : en
Pages : 282
Book Description
Version 5.0. A first course in rigorous mathematical analysis. Covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, sequences of functions, and metric spaces. Originally developed to teach Math 444 at University of Illinois at Urbana-Champaign and later enhanced for Math 521 at University of Wisconsin-Madison and Math 4143 at Oklahoma State University. The first volume is either a stand-alone one-semester course or the first semester of a year-long course together with the second volume. It can be used anywhere from a semester early introduction to analysis for undergraduates (especially chapters 1-5) to a year-long course for advanced undergraduates and masters-level students. See http://www.jirka.org/ra/ Table of Contents (of this volume I): Introduction 1. Real Numbers 2. Sequences and Series 3. Continuous Functions 4. The Derivative 5. The Riemann Integral 6. Sequences of Functions 7. Metric Spaces This first volume contains what used to be the entire book "Basic Analysis" before edition 5, that is chapters 1-7. Second volume contains chapters on multidimensional differential and integral calculus and further topics on approximation of functions.
Basic Analysis I
Author: James K. Peterson
Publisher: CRC Press
ISBN: 1351679457
Category : Mathematics
Languages : en
Pages : 595
Book Description
Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
Publisher: CRC Press
ISBN: 1351679457
Category : Mathematics
Languages : en
Pages : 595
Book Description
Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
Basic Real Analysis
Author: Houshang H. Sohrab
Publisher: Springer
ISBN: 1493918419
Category : Mathematics
Languages : en
Pages : 687
Book Description
This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue’s differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. —Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. —Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. —CHOICE Reviews
Publisher: Springer
ISBN: 1493918419
Category : Mathematics
Languages : en
Pages : 687
Book Description
This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue’s differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. —Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. —Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. —CHOICE Reviews
Basic Elements of Real Analysis
Author: Murray H. Protter
Publisher: Springer Science & Business Media
ISBN: 0387227490
Category : Mathematics
Languages : en
Pages : 284
Book Description
From the author of the highly-acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one-semester course in real analysis. Many students of mathematics and the physical and computer sciences need a text that presents the most important material in a brief and elementary fashion. The author meets this need with such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed, backed by illustrative examples throughout and no less than 45 figures.
Publisher: Springer Science & Business Media
ISBN: 0387227490
Category : Mathematics
Languages : en
Pages : 284
Book Description
From the author of the highly-acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one-semester course in real analysis. Many students of mathematics and the physical and computer sciences need a text that presents the most important material in a brief and elementary fashion. The author meets this need with such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed, backed by illustrative examples throughout and no less than 45 figures.
Basic Real Analysis
Author: Anthony W. Knapp
Publisher: Springer Science & Business Media
ISBN: 0817644415
Category : Mathematics
Languages : en
Pages : 671
Book Description
Systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established A comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics Included throughout are many examples and hundreds of problems, and a separate 55-page section gives hints or complete solutions for most.
Publisher: Springer Science & Business Media
ISBN: 0817644415
Category : Mathematics
Languages : en
Pages : 671
Book Description
Systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established A comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics Included throughout are many examples and hundreds of problems, and a separate 55-page section gives hints or complete solutions for most.
Basic Analysis of Regularized Series and Products
Author: Jay Jorgenson
Publisher: Springer
ISBN: 3540481931
Category : Mathematics
Languages : en
Pages : 127
Book Description
Analytic number theory and part of the spectral theory of operators (differential, pseudo-differential, elliptic, etc.) are being merged under amore general analytic theory of regularized products of certain sequences satisfying a few basic axioms. The most basic examples consist of the sequence of natural numbers, the sequence of zeros with positive imaginary part of the Riemann zeta function, and the sequence of eigenvalues, say of a positive Laplacian on a compact or certain cases of non-compact manifolds. The resulting theory is applicable to ergodic theory and dynamical systems; to the zeta and L-functions of number theory or representation theory and modular forms; to Selberg-like zeta functions; andto the theory of regularized determinants familiar in physics and other parts of mathematics. Aside from presenting a systematic account of widely scattered results, the theory also provides new results. One part of the theory deals with complex analytic properties, and another part deals with Fourier analysis. Typical examples are given. This LNM provides basic results which are and will be used in further papers, starting with a general formulation of Cram r's theorem and explicit formulas. The exposition is self-contained (except for far-reaching examples), requiring only standard knowledge of analysis.
Publisher: Springer
ISBN: 3540481931
Category : Mathematics
Languages : en
Pages : 127
Book Description
Analytic number theory and part of the spectral theory of operators (differential, pseudo-differential, elliptic, etc.) are being merged under amore general analytic theory of regularized products of certain sequences satisfying a few basic axioms. The most basic examples consist of the sequence of natural numbers, the sequence of zeros with positive imaginary part of the Riemann zeta function, and the sequence of eigenvalues, say of a positive Laplacian on a compact or certain cases of non-compact manifolds. The resulting theory is applicable to ergodic theory and dynamical systems; to the zeta and L-functions of number theory or representation theory and modular forms; to Selberg-like zeta functions; andto the theory of regularized determinants familiar in physics and other parts of mathematics. Aside from presenting a systematic account of widely scattered results, the theory also provides new results. One part of the theory deals with complex analytic properties, and another part deals with Fourier analysis. Typical examples are given. This LNM provides basic results which are and will be used in further papers, starting with a general formulation of Cram r's theorem and explicit formulas. The exposition is self-contained (except for far-reaching examples), requiring only standard knowledge of analysis.
Real Analysis
Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 1470410990
Category : Mathematics
Languages : en
Pages : 811
Book Description
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.
Publisher: American Mathematical Soc.
ISBN: 1470410990
Category : Mathematics
Languages : en
Pages : 811
Book Description
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.
Basic Real Analysis
Author: James Howland
Publisher: Jones & Bartlett Learning
ISBN: 0763773182
Category : Mathematics
Languages : en
Pages : 233
Book Description
Ideal for the one-semester undergraduate course, Basic Real Analysis is intended for students who have recently completed a traditional calculus course and proves the basic theorems of Single Variable Calculus in a simple and accessible manner. It gradually builds upon key material as to not overwhelm students beginning the course and becomes more rigorous as they progresses. Optional appendices on sets and functions, countable and uncountable sets, and point set topology are included for those instructors who wish include these topics in their course. The author includes hints throughout the text to help students solve challenging problems. An online instructor's solutions manual is also available.
Publisher: Jones & Bartlett Learning
ISBN: 0763773182
Category : Mathematics
Languages : en
Pages : 233
Book Description
Ideal for the one-semester undergraduate course, Basic Real Analysis is intended for students who have recently completed a traditional calculus course and proves the basic theorems of Single Variable Calculus in a simple and accessible manner. It gradually builds upon key material as to not overwhelm students beginning the course and becomes more rigorous as they progresses. Optional appendices on sets and functions, countable and uncountable sets, and point set topology are included for those instructors who wish include these topics in their course. The author includes hints throughout the text to help students solve challenging problems. An online instructor's solutions manual is also available.
Basic Analysis II
Author: Jiri Lebl
Publisher: Createspace Independent Publishing Platform
ISBN: 9781718865488
Category :
Languages : en
Pages : 196
Book Description
Version 2.0. The second volume of Basic Analysis, a first course in mathematical analysis. This volume is the second semester material for a year-long sequence for advanced undergraduates or masters level students. This volume started with notes for Math 522 at University of Wisconsin-Madison, and then was heavily revised and modified for teaching Math 4153/5053 at Oklahoma State University. It covers differential calculus in several variables, line integrals, multivariable Riemann integral including a basic case of Green's Theorem, and topics on power series, Arzelà-Ascoli, Stone-Weierstrass, and Fourier Series. See http://www.jirka.org/ra/ Table of Contents (of this volume II): 8. Several Variables and Partial Derivatives 9. One Dimensional Integrals in Several Variables 10. Multivariable Integral 11. Functions as Limits
Publisher: Createspace Independent Publishing Platform
ISBN: 9781718865488
Category :
Languages : en
Pages : 196
Book Description
Version 2.0. The second volume of Basic Analysis, a first course in mathematical analysis. This volume is the second semester material for a year-long sequence for advanced undergraduates or masters level students. This volume started with notes for Math 522 at University of Wisconsin-Madison, and then was heavily revised and modified for teaching Math 4153/5053 at Oklahoma State University. It covers differential calculus in several variables, line integrals, multivariable Riemann integral including a basic case of Green's Theorem, and topics on power series, Arzelà-Ascoli, Stone-Weierstrass, and Fourier Series. See http://www.jirka.org/ra/ Table of Contents (of this volume II): 8. Several Variables and Partial Derivatives 9. One Dimensional Integrals in Several Variables 10. Multivariable Integral 11. Functions as Limits
A Basic Course in Real Analysis
Author: Ajit Kumar
Publisher: CRC Press
ISBN: 1482216388
Category : Mathematics
Languages : en
Pages : 320
Book Description
Based on the authors' combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand t
Publisher: CRC Press
ISBN: 1482216388
Category : Mathematics
Languages : en
Pages : 320
Book Description
Based on the authors' combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand t