Automated Grammatical Error Detection for Language Learners

Automated Grammatical Error Detection for Language Learners PDF Author: Claudia Leacock
Publisher: Morgan & Claypool Publishers
ISBN: 1627050140
Category : Computers
Languages : en
Pages : 172

Get Book Here

Book Description
It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult: constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will continue to contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems.

Automated Grammatical Error Detection for Language Learners

Automated Grammatical Error Detection for Language Learners PDF Author: Claudia Leacock
Publisher: Morgan & Claypool Publishers
ISBN: 1627050140
Category : Computers
Languages : en
Pages : 172

Get Book Here

Book Description
It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult: constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will continue to contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems.

Automated Grammatical Error Detection for Language Learners, Second Edition

Automated Grammatical Error Detection for Language Learners, Second Edition PDF Author: Claudia Leacock
Publisher: Springer Nature
ISBN: 3031021533
Category : Computers
Languages : en
Pages : 154

Get Book Here

Book Description
It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult: constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will continue to contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems.

Automated Grammatical Error Detection for Language Learners

Automated Grammatical Error Detection for Language Learners PDF Author: Claudia Leacock
Publisher: Springer Nature
ISBN: 3031021371
Category : Computers
Languages : en
Pages : 127

Get Book Here

Book Description
It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult -- constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems. Table of Contents: Introduction / History of Automated Grammatical Error Detection / Special Problems of Language Learners / Language Learner Data / Evaluating Error Detection Systems / Article and Preposition Errors / Collocation Errors / Different Approaches for Different Errors / Annotating Learner Errors / New Directions / Conclusion

Explainable Natural Language Processing

Explainable Natural Language Processing PDF Author: Anders Søgaard
Publisher: Springer Nature
ISBN: 3031021800
Category : Computers
Languages : en
Pages : 107

Get Book Here

Book Description
This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.

Linguistic Fundamentals for Natural Language Processing II

Linguistic Fundamentals for Natural Language Processing II PDF Author: Emily M. Bender
Publisher: Springer Nature
ISBN: 303102172X
Category : Computers
Languages : en
Pages : 250

Get Book Here

Book Description
Meaning is a fundamental concept in Natural Language Processing (NLP), in the tasks of both Natural Language Understanding (NLU) and Natural Language Generation (NLG). This is because the aims of these fields are to build systems that understand what people mean when they speak or write, and that can produce linguistic strings that successfully express to people the intended content. In order for NLP to scale beyond partial, task-specific solutions, researchers in these fields must be informed by what is known about how humans use language to express and understand communicative intents. The purpose of this book is to present a selection of useful information about semantics and pragmatics, as understood in linguistics, in a way that's accessible to and useful for NLP practitioners with minimal (or even no) prior training in linguistics.

Conversational AI

Conversational AI PDF Author: Michael McTear
Publisher: Springer Nature
ISBN: 3031021762
Category : Computers
Languages : en
Pages : 234

Get Book Here

Book Description
This book provides a comprehensive introduction to Conversational AI. While the idea of interacting with a computer using voice or text goes back a long way, it is only in recent years that this idea has become a reality with the emergence of digital personal assistants, smart speakers, and chatbots. Advances in AI, particularly in deep learning, along with the availability of massive computing power and vast amounts of data, have led to a new generation of dialogue systems and conversational interfaces. Current research in Conversational AI focuses mainly on the application of machine learning and statistical data-driven approaches to the development of dialogue systems. However, it is important to be aware of previous achievements in dialogue technology and to consider to what extent they might be relevant to current research and development. Three main approaches to the development of dialogue systems are reviewed: rule-based systems that are handcrafted using best practice guidelines; statistical data-driven systems based on machine learning; and neural dialogue systems based on end-to-end learning. Evaluating the performance and usability of dialogue systems has become an important topic in its own right, and a variety of evaluation metrics and frameworks are described. Finally, a number of challenges for future research are considered, including: multimodality in dialogue systems, visual dialogue; data efficient dialogue model learning; using knowledge graphs; discourse and dialogue phenomena; hybrid approaches to dialogue systems development; dialogue with social robots and in the Internet of Things; and social and ethical issues.

Semantic Relations Between Nominals

Semantic Relations Between Nominals PDF Author: Vivi Nastase
Publisher: Morgan & Claypool Publishers
ISBN: 1636390870
Category : Computers
Languages : en
Pages : 236

Get Book Here

Book Description
Opportunity and Curiosity find similar rocks on Mars. One can generally understand this statement if one knows that Opportunity and Curiosity are instances of the class of Mars rovers, and recognizes that, as signalled by the word on, ROCKS are located on Mars. Two mental operations contribute to understanding: recognize how entities/concepts mentioned in a text interact and recall already known facts (which often themselves consist of relations between entities/concepts). Concept interactions one identifies in the text can be added to the repository of known facts, and aid the processing of future texts. The amassed knowledge can assist many advanced language-processing tasks, including summarization, question answering and machine translation. Semantic relations are the connections we perceive between things which interact. The book explores two, now intertwined, threads in semantic relations: how they are expressed in texts and what role they play in knowledge repositories. A historical perspective takes us back more than 2000 years to their beginnings, and then to developments much closer to our time: various attempts at producing lists of semantic relations, necessary and sufficient to express the interaction between entities/concepts. A look at relations outside context, then in general texts, and then in texts in specialized domains, has gradually brought new insights, and led to essential adjustments in how the relations are seen. At the same time, datasets which encompass these phenomena have become available. They started small, then grew somewhat, then became truly large. The large resources are inevitably noisy because they are constructed automatically. The available corpora—to be analyzed, or used to gather relational evidence—have also grown, and some systems now operate at the Web scale. The learning of semantic relations has proceeded in parallel, in adherence to supervised, unsupervised or distantly supervised paradigms. Detailed analyses of annotated datasets in supervised learning have granted insights useful in developing unsupervised and distantly supervised methods. These in turn have contributed to the understanding of what relations are and how to find them, and that has led to methods scalable to Web-sized textual data. The size and redundancy of information in very large corpora, which at first seemed problematic, have been harnessed to improve the process of relation extraction/learning. The newest technology, deep learning, supplies innovative and surprising solutions to a variety of problems in relation learning. This book aims to paint a big picture and to offer interesting details.

Finite-State Text Processing

Finite-State Text Processing PDF Author: Kyle Gorman
Publisher: Springer Nature
ISBN: 3031021797
Category : Computers
Languages : en
Pages : 140

Get Book Here

Book Description
Weighted finite-state transducers (WFSTs) are commonly used by engineers and computational linguists for processing and generating speech and text. This book first provides a detailed introduction to this formalism. It then introduces Pynini, a Python library for compiling finite-state grammars and for combining, optimizing, applying, and searching finite-state transducers. This book illustrates this library's conventions and use with a series of case studies. These include the compilation and application of context-dependent rewrite rules, the construction of morphological analyzers and generators, and text generation and processing applications.

Neural Network Methods for Natural Language Processing

Neural Network Methods for Natural Language Processing PDF Author: Yoav Goldberg
Publisher: Springer Nature
ISBN: 3031021657
Category : Computers
Languages : en
Pages : 20

Get Book Here

Book Description
Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Automatic Text Simplification

Automatic Text Simplification PDF Author: Horacio Saggion
Publisher: Springer Nature
ISBN: 3031021665
Category : Computers
Languages : en
Pages : 121

Get Book Here

Book Description
Thanks to the availability of texts on the Web in recent years, increased knowledge and information have been made available to broader audiences. However, the way in which a text is written—its vocabulary, its syntax—can be difficult to read and understand for many people, especially those with poor literacy, cognitive or linguistic impairment, or those with limited knowledge of the language of the text. Texts containing uncommon words or long and complicated sentences can be difficult to read and understand by people as well as difficult to analyze by machines. Automatic text simplification is the process of transforming a text into another text which, ideally conveying the same message, will be easier to read and understand by a broader audience. The process usually involves the replacement of difficult or unknown phrases with simpler equivalents and the transformation of long and syntactically complex sentences into shorter and less complex ones. Automatic text simplification, a research topic which started 20 years ago, now has taken on a central role in natural language processing research not only because of the interesting challenges it posesses but also because of its social implications. This book presents past and current research in text simplification, exploring key issues including automatic readability assessment, lexical simplification, and syntactic simplification. It also provides a detailed account of machine learning techniques currently used in simplification, describes full systems designed for specific languages and target audiences, and offers available resources for research and development together with text simplification evaluation techniques.