Author: David Eugene Smith
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 96
Book Description
History of Modern Mathematics
Author: David Eugene Smith
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 96
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 96
Book Description
Bulletin of the American Mathematical Society
Author: American Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 678
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 678
Book Description
The Scientific Papers of J. Willard Gibbs
Author: Josiah Willard Gibbs
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 306
Book Description
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 306
Book Description
The Collected Works of J. Willard Gibbs: pt. 1. Elementary principles in statistical mechanics. pt. 2. Dynamics. Vector analysis and multiple algebra. Electromagnetiic theory of light, etc
Author: Josiah Willard Gibbs
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 528
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 528
Book Description
The Scientific Papers of J. Willard Gibbs: Dynamics. Vector analysis and multiple algebra. Electromagnetic theory of light, etc
Author: Josiah Willard Gibbs
Publisher:
ISBN:
Category : Phase rule and equilibrium
Languages : en
Pages : 304
Book Description
Publisher:
ISBN:
Category : Phase rule and equilibrium
Languages : en
Pages : 304
Book Description
From Past to Future: Graßmann's Work in Context
Author: Hans-Joachim Petsche
Publisher: Springer Science & Business Media
ISBN: 303460405X
Category : Mathematics
Languages : en
Pages : 572
Book Description
On the occasion of the 200th anniversary of the birth of Hermann Graßmann (1809-1877), an interdisciplinary conference was held in Potsdam, Germany, and in Graßmann's hometown Szczecin, Poland. The idea of the conference was to present a multi-faceted picture of Graßmann, and to uncover the complexity of the factors that were responsible for his creativity. The conference demonstrated not only the very influential reception of his work at the turn of the 20th century, but also the unexpected modernity of his ideas, and their continuing development in the 21st century. This book contains 37 papers presented at the conference. They investigate the significance of Graßmann's work for philosophical as well as for scientific and methodological questions, for comparative philology in general and for Indology in particular, for psychology, physiology, religious studies, musicology, didactics, and, last but not least, mathematics. In addition, the book contains numerous illustrations and English translations of original sources, which are published here for the first time. These include life histories of Graßmann (written by his son Justus) and of his brother Robert (written by Robert himself), as well as the paper "On the concept and extent of pure theory of number'' by Justus Graßmann (the father).
Publisher: Springer Science & Business Media
ISBN: 303460405X
Category : Mathematics
Languages : en
Pages : 572
Book Description
On the occasion of the 200th anniversary of the birth of Hermann Graßmann (1809-1877), an interdisciplinary conference was held in Potsdam, Germany, and in Graßmann's hometown Szczecin, Poland. The idea of the conference was to present a multi-faceted picture of Graßmann, and to uncover the complexity of the factors that were responsible for his creativity. The conference demonstrated not only the very influential reception of his work at the turn of the 20th century, but also the unexpected modernity of his ideas, and their continuing development in the 21st century. This book contains 37 papers presented at the conference. They investigate the significance of Graßmann's work for philosophical as well as for scientific and methodological questions, for comparative philology in general and for Indology in particular, for psychology, physiology, religious studies, musicology, didactics, and, last but not least, mathematics. In addition, the book contains numerous illustrations and English translations of original sources, which are published here for the first time. These include life histories of Graßmann (written by his son Justus) and of his brother Robert (written by Robert himself), as well as the paper "On the concept and extent of pure theory of number'' by Justus Graßmann (the father).
The Prehistory of Mathematical Structuralism
Author: Erich H. Reck
Publisher: Oxford University Press
ISBN: 0190641223
Category : Mathematics
Languages : en
Pages : 469
Book Description
This edited volume explores the previously underacknowledged 'pre-history' of mathematical structuralism, showing that structuralism has deep roots in the history of modern mathematics. The contributors explore this history along two distinct but interconnected dimensions. First, they reconsider the methodological contributions of major figures in the history of mathematics. Second, they re-examine a range of philosophical reflections from mathematically-inclinded philosophers like Russell, Carnap, and Quine, whose work led to profound conclusions about logical, epistemological, and metaphysic.
Publisher: Oxford University Press
ISBN: 0190641223
Category : Mathematics
Languages : en
Pages : 469
Book Description
This edited volume explores the previously underacknowledged 'pre-history' of mathematical structuralism, showing that structuralism has deep roots in the history of modern mathematics. The contributors explore this history along two distinct but interconnected dimensions. First, they reconsider the methodological contributions of major figures in the history of mathematics. Second, they re-examine a range of philosophical reflections from mathematically-inclinded philosophers like Russell, Carnap, and Quine, whose work led to profound conclusions about logical, epistemological, and metaphysic.
Nature
Author: Sir Norman Lockyer
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 1362
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 1362
Book Description
Dynamics. Vector analysis and multiple algebra. Electromagnetic theory of light, etc
Author: Josiah Willard Gibbs
Publisher:
ISBN:
Category : Phase rule and equilibrium
Languages : en
Pages : 304
Book Description
Publisher:
ISBN:
Category : Phase rule and equilibrium
Languages : en
Pages : 304
Book Description
Grassmann Algebra Volume 1: Foundations
Author: John Browne
Publisher: John M Browne
ISBN: 1479197637
Category : Mathematics
Languages : en
Pages : 589
Book Description
Grassmann Algebra Volume 1: Foundations Exploring extended vector algebra with Mathematica Grassmann algebra extends vector algebra by introducing the exterior product to algebraicize the notion of linear dependence. With it, vectors may be extended to higher-grade entities: bivectors, trivectors, … multivectors. The extensive exterior product also has a regressive dual: the regressive product. The pair behaves a little like the Boolean duals of union and intersection. By interpreting one of the elements of the vector space as an origin point, points can be defined, and the exterior product can extend points into higher-grade located entities from which lines, planes and multiplanes can be defined. Theorems of Projective Geometry are simply formulae involving these entities and the dual products. By introducing the (orthogonal) complement operation, the scalar product of vectors may be extended to the interior product of multivectors, which in this more general case may no longer result in a scalar. The notion of the magnitude of vectors is extended to the magnitude of multivectors: for example, the magnitude of the exterior product of two vectors (a bivector) is the area of the parallelogram formed by them. To develop these foundational concepts, we need only consider entities which are the sums of elements of the same grade. This is the focus of this volume. But the entities of Grassmann algebra need not be of the same grade, and the possible product types need not be constricted to just the exterior, regressive and interior products. For example quaternion algebra is simply the Grassmann algebra of scalars and bivectors under a new product operation. Clifford, geometric and higher order hypercomplex algebras, for example the octonions, may be defined similarly. If to these we introduce Clifford's invention of a scalar which squares to zero, we can define entities (for example dual quaternions) with which we can perform elaborate transformations. Exploration of these entities, operations and algebras will be the focus of the volume to follow this. There is something fascinating about the beauty with which the mathematical structures that Hermann Grassmann discovered describe the physical world, and something also fascinating about how these beautiful structures have been largely lost to the mainstreams of mathematics and science. He wrote his seminal Ausdehnungslehre (Die Ausdehnungslehre. Vollständig und in strenger Form) in 1862. But it was not until the latter part of his life that he received any significant recognition for it, most notably by Gibbs and Clifford. In recent times David Hestenes' Geometric Algebra must be given the credit for much of the emerging awareness of Grassmann's innovation. In the hope that the book be accessible to scientists and engineers, students and professionals alike, the text attempts to avoid any terminology which does not make an essential contribution to an understanding of the basic concepts. Some familiarity with basic linear algebra may however be useful. The book is written using Mathematica, a powerful system for doing mathematics on a computer. This enables the theory to be cross-checked with computational explorations. However, a knowledge of Mathematica is not essential for an appreciation of Grassmann's beautiful ideas.
Publisher: John M Browne
ISBN: 1479197637
Category : Mathematics
Languages : en
Pages : 589
Book Description
Grassmann Algebra Volume 1: Foundations Exploring extended vector algebra with Mathematica Grassmann algebra extends vector algebra by introducing the exterior product to algebraicize the notion of linear dependence. With it, vectors may be extended to higher-grade entities: bivectors, trivectors, … multivectors. The extensive exterior product also has a regressive dual: the regressive product. The pair behaves a little like the Boolean duals of union and intersection. By interpreting one of the elements of the vector space as an origin point, points can be defined, and the exterior product can extend points into higher-grade located entities from which lines, planes and multiplanes can be defined. Theorems of Projective Geometry are simply formulae involving these entities and the dual products. By introducing the (orthogonal) complement operation, the scalar product of vectors may be extended to the interior product of multivectors, which in this more general case may no longer result in a scalar. The notion of the magnitude of vectors is extended to the magnitude of multivectors: for example, the magnitude of the exterior product of two vectors (a bivector) is the area of the parallelogram formed by them. To develop these foundational concepts, we need only consider entities which are the sums of elements of the same grade. This is the focus of this volume. But the entities of Grassmann algebra need not be of the same grade, and the possible product types need not be constricted to just the exterior, regressive and interior products. For example quaternion algebra is simply the Grassmann algebra of scalars and bivectors under a new product operation. Clifford, geometric and higher order hypercomplex algebras, for example the octonions, may be defined similarly. If to these we introduce Clifford's invention of a scalar which squares to zero, we can define entities (for example dual quaternions) with which we can perform elaborate transformations. Exploration of these entities, operations and algebras will be the focus of the volume to follow this. There is something fascinating about the beauty with which the mathematical structures that Hermann Grassmann discovered describe the physical world, and something also fascinating about how these beautiful structures have been largely lost to the mainstreams of mathematics and science. He wrote his seminal Ausdehnungslehre (Die Ausdehnungslehre. Vollständig und in strenger Form) in 1862. But it was not until the latter part of his life that he received any significant recognition for it, most notably by Gibbs and Clifford. In recent times David Hestenes' Geometric Algebra must be given the credit for much of the emerging awareness of Grassmann's innovation. In the hope that the book be accessible to scientists and engineers, students and professionals alike, the text attempts to avoid any terminology which does not make an essential contribution to an understanding of the basic concepts. Some familiarity with basic linear algebra may however be useful. The book is written using Mathematica, a powerful system for doing mathematics on a computer. This enables the theory to be cross-checked with computational explorations. However, a knowledge of Mathematica is not essential for an appreciation of Grassmann's beautiful ideas.