Nonlinear Parabolic and Elliptic Equations

Nonlinear Parabolic and Elliptic Equations PDF Author: C.V. Pao
Publisher: Springer Science & Business Media
ISBN: 1461530342
Category : Mathematics
Languages : en
Pages : 786

Get Book Here

Book Description
In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.

Nonlinear Parabolic and Elliptic Equations

Nonlinear Parabolic and Elliptic Equations PDF Author: C.V. Pao
Publisher: Springer Science & Business Media
ISBN: 1461530342
Category : Mathematics
Languages : en
Pages : 786

Get Book Here

Book Description
In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.

Blow-Up in Quasilinear Parabolic Equations

Blow-Up in Quasilinear Parabolic Equations PDF Author: A. A. Samarskii
Publisher: Walter de Gruyter
ISBN: 3110889862
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

Applied Mechanics Reviews

Applied Mechanics Reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 620

Get Book Here

Book Description


Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows

Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows PDF Author: Wenxian Shen
Publisher: American Mathematical Soc.
ISBN: 0821808672
Category : Mathematics
Languages : en
Pages : 111

Get Book Here

Book Description
This volume is devoted to the study of almost automorphic dynamics in differential equations. By making use of techniques from abstract topological dynamics, it is shown that almost automorphy, a notion which was introduced by S. Bochner in 1955, is essential and fundamental in the qualitative study of almost periodic differential equations.

Research in Progress

Research in Progress PDF Author:
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 652

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages :

Get Book Here

Book Description


Nonlinear Systems Of Partial Differential Equations: Applications To Life And Physical Sciences

Nonlinear Systems Of Partial Differential Equations: Applications To Life And Physical Sciences PDF Author: Anthony W Leung
Publisher: World Scientific
ISBN: 9814467472
Category : Mathematics
Languages : en
Pages : 545

Get Book Here

Book Description
The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W2ptheory. Introductory explanations are included in the appendices for non-expert readers.The first chapter covers a wide range of steady-state and stability results involving prey-predator, competing and cooperating species under strong or weak interactions. Many diagrams are included to easily understand the description of the range of parameters for coexistence. The book provides a comprehensive presentation of topics developed by numerous researchers. Large complex systems are introduced for modern research in ecology, medicine and engineering.Chapter 3 combines the theories of earlier chapters with the optimal control of systems involving resource management and fission reactors. This is the first book to present such topics at research level. Chapter 4 considers persistence, cross-diffusion, and boundary induced blow-up, etc. The book also covers traveling or systems of waves, coupled Navier-Stokes and Maxwell systems, and fluid equations of plasma display. These should be of interest to life and physical scientists.

Nonlinear Second Order Parabolic Equations

Nonlinear Second Order Parabolic Equations PDF Author: Mingxin Wang
Publisher: CRC Press
ISBN: 1000353958
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 1135436266
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Pólya in the 1930's and rediscovered in part several times since, it was not until the 1980's that the Sturmian argument for PDEs began to penetrate into the theory of parabolic equations and was found to have several fundamental applications. Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications focuses on geometric aspects of the intersection comparison for nonlinear models creating finite-time singularities. After introducing the original Sturm zero set results for linear parabolic equations and the basic concepts of geometric analysis, the author presents the main concepts and regularity results of the geometric intersection theory (G-theory). Here he considers the general singular equation and presents the geometric notions related to the regularity and interface propagation of solutions. In the general setting, the author describes the main aspects of the ODE-PDE duality, proves existence and nonexistence theorems, establishes uniqueness and optimal Bernstein-type estimates, and derives interface equations, including higher-order equations. The final two chapters explore some special aspects of discontinuous and continuous limit semigroups generated by singular parabolic equations. Much of the information presented here has never before been published in book form. Readable and self-contained, this book forms a unique and outstanding reference on second-order parabolic PDEs used as models for a wide range of physical problems.

Boundary Value Problems for Linear Evolution Partial Differential Equations

Boundary Value Problems for Linear Evolution Partial Differential Equations PDF Author: H.G. Garnir
Publisher: Springer Science & Business Media
ISBN: 9789027707888
Category : Mathematics
Languages : en
Pages : 498

Get Book Here

Book Description
Most of the problems posed by Physics to Mathematical Analysis are boundary value problems for partial differential equations and systems. Among them, the problems concerning linear evolution equations have an outstanding position in the study of the physical world, namely in fluid dynamics, elastodynamics, electromagnetism, plasma physics and so on. This Institute was devoted to these problems. It developed essentially the new methods inspired by Functional Analysis and specially by the theories of Hilbert spaces, distributions and ultradistributions. The lectures brought a detailed exposition of the novelties in this field by world known specialists. We held the Institute at the Sart Tilman Campus of the University of Liege from September 6 to 17, 1976. It was attended by 99 participants, 79 from NATO Countries [Belgium (30), Canada (2), Denmark (I), France (15), West Germany (9), Italy (5), Turkey (3), USA (14)] and 20 from non NATO Countries [Algeria (2), Australia (3), Austria (I), Finland (1), Iran (3), Ireland (I), Japan (6), Poland (1), Sweden (I), Zair (1)]. There were 5 courses of_ 6_ h. ollI'. s~. 1. nL lJ. , h. t;l. l. I. rl"~, 1. n,L ,_ h. t;l. l. I. r. !'~ , ?_ n. f~ ?_ h,,