Author: Nicholas James Strausfeld
Publisher: Belknap Press
ISBN: 0674046331
Category : Science
Languages : en
Pages : 849
Book Description
In The Descent of Man, Charles Darwin proposed that an ant’s brain, no larger than a pin’s head, must be sophisticated to accomplish all that it does. Yet today many people still find it surprising that insects and other arthropods show behaviors that are much more complex than innate reflexes. They are products of versatile brains which, in a sense, think. Fascinating in their own right, arthropods provide fundamental insights into how brains process and organize sensory information to produce learning, strategizing, cooperation, and sociality. Nicholas Strausfeld elucidates the evolution of this knowledge, beginning with nineteenth-century debates about how similar arthropod brains were to vertebrate brains. This exchange, he shows, had a profound and far-reaching impact on attitudes toward evolution and animal origins. Many renowned scientists, including Sigmund Freud, cut their professional teeth studying arthropod nervous systems. The greatest neuroanatomist of them all, Santiago Ramón y Cajal—founder of the neuron doctrine—was awed by similarities between insect and mammalian brains. Writing in a style that will appeal to a broad readership, Strausfeld weaves anatomical observations with evidence from molecular biology, neuroethology, cladistics, and the fossil record to explore the neurobiology of the largest phylum on earth—and one that is crucial to the well-being of our planet. Highly informative and richly illustrated, Arthropod Brains offers an original synthesis drawing on many fields, and a comprehensive reference that will serve biologists for years to come.
Arthropod Brains
Author: Nicholas James Strausfeld
Publisher: Belknap Press
ISBN: 0674046331
Category : Science
Languages : en
Pages : 849
Book Description
In The Descent of Man, Charles Darwin proposed that an ant’s brain, no larger than a pin’s head, must be sophisticated to accomplish all that it does. Yet today many people still find it surprising that insects and other arthropods show behaviors that are much more complex than innate reflexes. They are products of versatile brains which, in a sense, think. Fascinating in their own right, arthropods provide fundamental insights into how brains process and organize sensory information to produce learning, strategizing, cooperation, and sociality. Nicholas Strausfeld elucidates the evolution of this knowledge, beginning with nineteenth-century debates about how similar arthropod brains were to vertebrate brains. This exchange, he shows, had a profound and far-reaching impact on attitudes toward evolution and animal origins. Many renowned scientists, including Sigmund Freud, cut their professional teeth studying arthropod nervous systems. The greatest neuroanatomist of them all, Santiago Ramón y Cajal—founder of the neuron doctrine—was awed by similarities between insect and mammalian brains. Writing in a style that will appeal to a broad readership, Strausfeld weaves anatomical observations with evidence from molecular biology, neuroethology, cladistics, and the fossil record to explore the neurobiology of the largest phylum on earth—and one that is crucial to the well-being of our planet. Highly informative and richly illustrated, Arthropod Brains offers an original synthesis drawing on many fields, and a comprehensive reference that will serve biologists for years to come.
Publisher: Belknap Press
ISBN: 0674046331
Category : Science
Languages : en
Pages : 849
Book Description
In The Descent of Man, Charles Darwin proposed that an ant’s brain, no larger than a pin’s head, must be sophisticated to accomplish all that it does. Yet today many people still find it surprising that insects and other arthropods show behaviors that are much more complex than innate reflexes. They are products of versatile brains which, in a sense, think. Fascinating in their own right, arthropods provide fundamental insights into how brains process and organize sensory information to produce learning, strategizing, cooperation, and sociality. Nicholas Strausfeld elucidates the evolution of this knowledge, beginning with nineteenth-century debates about how similar arthropod brains were to vertebrate brains. This exchange, he shows, had a profound and far-reaching impact on attitudes toward evolution and animal origins. Many renowned scientists, including Sigmund Freud, cut their professional teeth studying arthropod nervous systems. The greatest neuroanatomist of them all, Santiago Ramón y Cajal—founder of the neuron doctrine—was awed by similarities between insect and mammalian brains. Writing in a style that will appeal to a broad readership, Strausfeld weaves anatomical observations with evidence from molecular biology, neuroethology, cladistics, and the fossil record to explore the neurobiology of the largest phylum on earth—and one that is crucial to the well-being of our planet. Highly informative and richly illustrated, Arthropod Brains offers an original synthesis drawing on many fields, and a comprehensive reference that will serve biologists for years to come.
Arthropod Brain
Author: A. P. Gupta
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 616
Book Description
The definitive textbook and reference guide to the arthropod brain. The material is arranged logically in three sections. Section I, on evolution, includes a discussion on the presence of a fourth component, tetrocerebrum in the insect brain in addition to the three commonly recognized parts, and the evolutionary trends in the central and mushroom bodies in major arthropod groups. A section on structure and function includes detailed ultrastructural studies of the brain as well as studies of the mechanoreceptory centers, peripheral sensory coding and sensilla function, and antennal information processing. Also examines biochemical topics such as bioamines and mucosubstances, their respective roles in brain function, and various techniques of brain research.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 616
Book Description
The definitive textbook and reference guide to the arthropod brain. The material is arranged logically in three sections. Section I, on evolution, includes a discussion on the presence of a fourth component, tetrocerebrum in the insect brain in addition to the three commonly recognized parts, and the evolutionary trends in the central and mushroom bodies in major arthropod groups. A section on structure and function includes detailed ultrastructural studies of the brain as well as studies of the mechanoreceptory centers, peripheral sensory coding and sensilla function, and antennal information processing. Also examines biochemical topics such as bioamines and mucosubstances, their respective roles in brain function, and various techniques of brain research.
Arthropod Biology and Evolution
Author: Alessandro Minelli
Publisher: Springer Science & Business Media
ISBN: 3642361609
Category : Science
Languages : en
Pages : 530
Book Description
More than two thirds of all living organisms described to date belong to the phylum Arthropoda. But their diversity, as measured in terms of species number, is also accompanied by an amazing disparity in terms of body form, developmental processes, and adaptations to every inhabitable place on Earth, from the deepest marine abysses to the earth surface and the air. The Arthropoda also include one of the most fashionable and extensively studied of all model organisms, the fruit-fly, whose name is not only linked forever to Mendelian and population genetics, but has more recently come back to centre stage as one of the most important and more extensively investigated models in developmental genetics. This approach has completely changed our appreciation of some of the most characteristic traits of arthropods as are the origin and evolution of segments, their regional and individual specialization, and the origin and evolution of the appendages. At approximately the same time as developmental genetics was eventually turning into the major agent in the birth of evolutionary developmental biology (evo-devo), molecular phylogenetics was challenging the traditional views on arthropod phylogeny, including the relationships among the four major groups: insects, crustaceans, myriapods, and chelicerates. In the meantime, palaeontology was revealing an amazing number of extinct forms that on the one side have contributed to a radical revisitation of arthropod phylogeny, but on the other have provided evidence of a previously unexpected disparity of arthropod and arthropod-like forms that often challenge a clear-cut delimitation of the phylum.
Publisher: Springer Science & Business Media
ISBN: 3642361609
Category : Science
Languages : en
Pages : 530
Book Description
More than two thirds of all living organisms described to date belong to the phylum Arthropoda. But their diversity, as measured in terms of species number, is also accompanied by an amazing disparity in terms of body form, developmental processes, and adaptations to every inhabitable place on Earth, from the deepest marine abysses to the earth surface and the air. The Arthropoda also include one of the most fashionable and extensively studied of all model organisms, the fruit-fly, whose name is not only linked forever to Mendelian and population genetics, but has more recently come back to centre stage as one of the most important and more extensively investigated models in developmental genetics. This approach has completely changed our appreciation of some of the most characteristic traits of arthropods as are the origin and evolution of segments, their regional and individual specialization, and the origin and evolution of the appendages. At approximately the same time as developmental genetics was eventually turning into the major agent in the birth of evolutionary developmental biology (evo-devo), molecular phylogenetics was challenging the traditional views on arthropod phylogeny, including the relationships among the four major groups: insects, crustaceans, myriapods, and chelicerates. In the meantime, palaeontology was revealing an amazing number of extinct forms that on the one side have contributed to a radical revisitation of arthropod phylogeny, but on the other have provided evidence of a previously unexpected disparity of arthropod and arthropod-like forms that often challenge a clear-cut delimitation of the phylum.
Plants and the Human Brain
Author: David O. Kennedy
Publisher: Oxford University Press
ISBN: 0199914028
Category : Science
Languages : en
Pages : 395
Book Description
We're all familiar with the idea that plant-derived chemicals can have an impact on the functioning of the human brain. Most of us reach for a cup of coffee or tea in the morning, many of us occasionally eat some chocolate, some smoke a cigarette or take an herbal supplement, and some people use illicit drugs. We know a great deal about the mechanisms by which the psychoactive components of these various products have their effects on human brain function, but the question of why they have these effects has been almost totally ignored. This book sets out to describe not only how, in terms of pharmacology or psychopharmacology, but more importantly why plant- and fungus-derived chemicals have their effects on the human brain. The answer to this last question resides, in part, with the terrestrial world's two dominant life forms, the plants and the insects, and the many ecological roles the 'secondary metabolite' plant chemicals are trying to play; for instance, defending the plant against insect herbivores whilst attracting insect pollinators. The answer also resides in the intersecting genetic heritage of mammals, plants, and insects and the surprising biological similarities between the three taxa. In particular it revolves around the close correspondence between the brains of insects and humans, and the intercellular signaling pathways shared by plants and humans. Plants and the Human Brain describes and discusses both how and why phytochemicals affect brain function with respect to the three main groups of secondary metabolites: the alkaloids, which provide us with caffeine, a host of poisons, a handful of hallucinogens, and most drugs of abuse (e.g. morphine, cocaine, DMT, LSD, and nicotine); the phenolics, including polyphenols, which constitute a significant and beneficial part of our natural diet; and the terpenes, a group of multifunctional compounds which provide us with the active components of cannabis and a multitude of herbal extracts such as ginseng, ginkgo and valerian.
Publisher: Oxford University Press
ISBN: 0199914028
Category : Science
Languages : en
Pages : 395
Book Description
We're all familiar with the idea that plant-derived chemicals can have an impact on the functioning of the human brain. Most of us reach for a cup of coffee or tea in the morning, many of us occasionally eat some chocolate, some smoke a cigarette or take an herbal supplement, and some people use illicit drugs. We know a great deal about the mechanisms by which the psychoactive components of these various products have their effects on human brain function, but the question of why they have these effects has been almost totally ignored. This book sets out to describe not only how, in terms of pharmacology or psychopharmacology, but more importantly why plant- and fungus-derived chemicals have their effects on the human brain. The answer to this last question resides, in part, with the terrestrial world's two dominant life forms, the plants and the insects, and the many ecological roles the 'secondary metabolite' plant chemicals are trying to play; for instance, defending the plant against insect herbivores whilst attracting insect pollinators. The answer also resides in the intersecting genetic heritage of mammals, plants, and insects and the surprising biological similarities between the three taxa. In particular it revolves around the close correspondence between the brains of insects and humans, and the intercellular signaling pathways shared by plants and humans. Plants and the Human Brain describes and discusses both how and why phytochemicals affect brain function with respect to the three main groups of secondary metabolites: the alkaloids, which provide us with caffeine, a host of poisons, a handful of hallucinogens, and most drugs of abuse (e.g. morphine, cocaine, DMT, LSD, and nicotine); the phenolics, including polyphenols, which constitute a significant and beneficial part of our natural diet; and the terpenes, a group of multifunctional compounds which provide us with the active components of cannabis and a multitude of herbal extracts such as ginseng, ginkgo and valerian.
The Ancient Origins of Consciousness
Author: Todd E. Feinberg
Publisher: MIT Press
ISBN: 0262534606
Category : Science
Languages : en
Pages : 387
Book Description
How consciousness appeared much earlier in evolutionary history than is commonly assumed, and why all vertebrates and perhaps even some invertebrates are conscious. How is consciousness created? When did it first appear on Earth, and how did it evolve? What constitutes consciousness, and which animals can be said to be sentient? In this book, Todd Feinberg and Jon Mallatt draw on recent scientific findings to answer these questions—and to tackle the most fundamental question about the nature of consciousness: how does the material brain create subjective experience? After assembling a list of the biological and neurobiological features that seem responsible for consciousness, and considering the fossil record of evolution, Feinberg and Mallatt argue that consciousness appeared much earlier in evolutionary history than is commonly assumed. About 520 to 560 million years ago, they explain, the great “Cambrian explosion” of animal diversity produced the first complex brains, which were accompanied by the first appearance of consciousness; simple reflexive behaviors evolved into a unified inner world of subjective experiences. From this they deduce that all vertebrates are and have always been conscious—not just humans and other mammals, but also every fish, reptile, amphibian, and bird. Considering invertebrates, they find that arthropods (including insects and probably crustaceans) and cephalopods (including the octopus) meet many of the criteria for consciousness. The obvious and conventional wisdom–shattering implication is that consciousness evolved simultaneously but independently in the first vertebrates and possibly arthropods more than half a billion years ago. Combining evolutionary, neurobiological, and philosophical approaches allows Feinberg and Mallatt to offer an original solution to the “hard problem” of consciousness.
Publisher: MIT Press
ISBN: 0262534606
Category : Science
Languages : en
Pages : 387
Book Description
How consciousness appeared much earlier in evolutionary history than is commonly assumed, and why all vertebrates and perhaps even some invertebrates are conscious. How is consciousness created? When did it first appear on Earth, and how did it evolve? What constitutes consciousness, and which animals can be said to be sentient? In this book, Todd Feinberg and Jon Mallatt draw on recent scientific findings to answer these questions—and to tackle the most fundamental question about the nature of consciousness: how does the material brain create subjective experience? After assembling a list of the biological and neurobiological features that seem responsible for consciousness, and considering the fossil record of evolution, Feinberg and Mallatt argue that consciousness appeared much earlier in evolutionary history than is commonly assumed. About 520 to 560 million years ago, they explain, the great “Cambrian explosion” of animal diversity produced the first complex brains, which were accompanied by the first appearance of consciousness; simple reflexive behaviors evolved into a unified inner world of subjective experiences. From this they deduce that all vertebrates are and have always been conscious—not just humans and other mammals, but also every fish, reptile, amphibian, and bird. Considering invertebrates, they find that arthropods (including insects and probably crustaceans) and cephalopods (including the octopus) meet many of the criteria for consciousness. The obvious and conventional wisdom–shattering implication is that consciousness evolved simultaneously but independently in the first vertebrates and possibly arthropods more than half a billion years ago. Combining evolutionary, neurobiological, and philosophical approaches allows Feinberg and Mallatt to offer an original solution to the “hard problem” of consciousness.
Arthropod Relationships
Author: Richard A. Fortey
Publisher: Springer Science & Business Media
ISBN: 9401149046
Category : Science
Languages : en
Pages : 377
Book Description
The arthropods contain more species than any other animal group, but the evolutionary pathways which led to their current diversity are still an issue of controversy. Arthropod Relationships provides an overview of our current understanding, responding to the new data arising from sequencing DNA, the discovery of new Cambrian fossils as direct evidence of early arthropod history, and developmental genetics. These new areas of research have stimulated a reconsideration of classical morphology and embryology. Arthropod Relationships is the first synthesis of the current debate to emerge: not since the volume edited by Gupta was published in 1979 has the arthropod phylogeny debate been, considered in this depth and breadth. Leaders in the various branches of arthropod biology have contributed to this volume. Chapters focus progressively from the general issues to the specific problems involving particular groups, and thence to a consideration of embryology and genetics. This wide range of disciplines is drawn on to approach an understanding of arthropod relationships, and to provide the most timely account of arthropod phylogeny. This book should be read by evolutionary biologists, palaeontologists, developmental geneticists and invertebrate zoologists. It will have a special interest for post-graduate students working in these fields.
Publisher: Springer Science & Business Media
ISBN: 9401149046
Category : Science
Languages : en
Pages : 377
Book Description
The arthropods contain more species than any other animal group, but the evolutionary pathways which led to their current diversity are still an issue of controversy. Arthropod Relationships provides an overview of our current understanding, responding to the new data arising from sequencing DNA, the discovery of new Cambrian fossils as direct evidence of early arthropod history, and developmental genetics. These new areas of research have stimulated a reconsideration of classical morphology and embryology. Arthropod Relationships is the first synthesis of the current debate to emerge: not since the volume edited by Gupta was published in 1979 has the arthropod phylogeny debate been, considered in this depth and breadth. Leaders in the various branches of arthropod biology have contributed to this volume. Chapters focus progressively from the general issues to the specific problems involving particular groups, and thence to a consideration of embryology and genetics. This wide range of disciplines is drawn on to approach an understanding of arthropod relationships, and to provide the most timely account of arthropod phylogeny. This book should be read by evolutionary biologists, palaeontologists, developmental geneticists and invertebrate zoologists. It will have a special interest for post-graduate students working in these fields.
Cephalopod Cognition
Author: Anne-Sophie Darmaillacq
Publisher: Cambridge University Press
ISBN: 1107015561
Category : Medical
Languages : en
Pages : 267
Book Description
Focusing on comparative cognition in cephalopods, this book illuminates the wide range of mental function in this often overlooked group.
Publisher: Cambridge University Press
ISBN: 1107015561
Category : Medical
Languages : en
Pages : 267
Book Description
Focusing on comparative cognition in cephalopods, this book illuminates the wide range of mental function in this often overlooked group.
The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach
Author: O. Breidbach
Publisher: Birkhäuser
ISBN: 3034892195
Category : Science
Languages : en
Pages : 453
Book Description
In this volume outstanding specialists review the state of the art in nervous system research for all main invertebrate groups. They provide a comprehensive up-to-date analysis important for everyone working on neuronal aspects of single groups, as well as taking into account the phylogenesis of invertebrates. The articles report on recently gained knowledge about diversification in the invertebrate nervous systems, and demonstrate the analytical power of a comparative approach. Novel techniques in molecular and developmental biology are creating new perspectives that point toward a theoretical foundation for a modern organismic biology. The comparative approach, as documented here, will engage the interest of anyone challenged by the problem of structural diversification in biology.
Publisher: Birkhäuser
ISBN: 3034892195
Category : Science
Languages : en
Pages : 453
Book Description
In this volume outstanding specialists review the state of the art in nervous system research for all main invertebrate groups. They provide a comprehensive up-to-date analysis important for everyone working on neuronal aspects of single groups, as well as taking into account the phylogenesis of invertebrates. The articles report on recently gained knowledge about diversification in the invertebrate nervous systems, and demonstrate the analytical power of a comparative approach. Novel techniques in molecular and developmental biology are creating new perspectives that point toward a theoretical foundation for a modern organismic biology. The comparative approach, as documented here, will engage the interest of anyone challenged by the problem of structural diversification in biology.
Invertebrate Histology
Author: Elise E. B. LaDouceur
Publisher: John Wiley & Sons
ISBN: 111950760X
Category : Medical
Languages : en
Pages : 354
Book Description
The first comprehensive reference to invertebrate histology Invertebrate Histology is a groundbreaking text that offers a comprehensive review of histology in invertebrates. Designed for use by anyone studying, diagnosing, or researching invertebrates, the book covers all major taxonomic groups with details of the histologic features, with color photographs and drawings that clearly demonstrate gross anatomy and histology. The authors, who are each experts in the histology of their respective taxa, bring together the most recent information on the topic into a single, complete volume. An accessible resource, each chapter focuses on a single taxonomic group with salient gross and histologic features that are clearly described in the text and augmented with color photographs and greyscale line drawings. The histologic images are from mostly hematoxylin and eosin stained microscopic slides showing various organ systems at high and low magnification. In addition, each chapter provides helpful tips for invertebrate dissection and information on how to process invertebrates for histology. This important book: Presents detailed information on histology of all major groups of invertebrates Offers a user-friendly text that is organized by taxonomic group for easy reference Features high-quality color photographs and drawings, with slides showing histology and gross photographs to demonstrate anatomy Provides details on invertebrate dissection and processing invertebrates for histology Written for veterinary pathologists, biologists, zoologists, students, and other scientists studying these species, Invertebrate Histology offers the most updated information on the topic written by over 20 experts in the field.
Publisher: John Wiley & Sons
ISBN: 111950760X
Category : Medical
Languages : en
Pages : 354
Book Description
The first comprehensive reference to invertebrate histology Invertebrate Histology is a groundbreaking text that offers a comprehensive review of histology in invertebrates. Designed for use by anyone studying, diagnosing, or researching invertebrates, the book covers all major taxonomic groups with details of the histologic features, with color photographs and drawings that clearly demonstrate gross anatomy and histology. The authors, who are each experts in the histology of their respective taxa, bring together the most recent information on the topic into a single, complete volume. An accessible resource, each chapter focuses on a single taxonomic group with salient gross and histologic features that are clearly described in the text and augmented with color photographs and greyscale line drawings. The histologic images are from mostly hematoxylin and eosin stained microscopic slides showing various organ systems at high and low magnification. In addition, each chapter provides helpful tips for invertebrate dissection and information on how to process invertebrates for histology. This important book: Presents detailed information on histology of all major groups of invertebrates Offers a user-friendly text that is organized by taxonomic group for easy reference Features high-quality color photographs and drawings, with slides showing histology and gross photographs to demonstrate anatomy Provides details on invertebrate dissection and processing invertebrates for histology Written for veterinary pathologists, biologists, zoologists, students, and other scientists studying these species, Invertebrate Histology offers the most updated information on the topic written by over 20 experts in the field.
Structure and Evolution of Invertebrate Nervous Systems
Author: Andreas Schmidt-Rhaesa
Publisher: Oxford University Press
ISBN: 0191066214
Category : Science
Languages : en
Pages : 921
Book Description
The nervous system is particularly fascinating for many biologists because it controls animal characteristics such as movement, behavior, and coordinated thinking. Invertebrate neurobiology has traditionally been studied in specific model organisms, whilst knowledge of the broad diversity of nervous system architecture and its evolution among metazoan animals has received less attention. This is the first major reference work in the field for 50 years, bringing together many leading evolutionary neurobiologists to review the most recent research on the structure of invertebrate nervous systems and provide a comprehensive and authoritative overview for a new generation of researchers. Presented in full colour throughout, Structure and Evolution of Invertebrate Nervous Systems synthesizes and illustrates the numerous new findings that have been made possible with light and electron microscopy. These include the recent introduction of new molecular and optical techniques such as immunohistochemical staining of neuron-specific antigens and fluorescence in-situ-hybridization, combined with visualization by confocal laser scanning microscopy. New approaches to analysing the structure of the nervous system are also included such as micro-computational tomography, cryo-soft X-ray tomography, and various 3-D visualization techniques. The book follows a systematic and phylogenetic structure, covering a broad range of taxa, interspersed with chapters focusing on selected topics in nervous system functioning which are presented as research highlights and perspectives. This comprehensive reference work will be an essential companion for graduate students and researchers alike in the fields of metazoan neurobiology, morphology, zoology, phylogeny and evolution.
Publisher: Oxford University Press
ISBN: 0191066214
Category : Science
Languages : en
Pages : 921
Book Description
The nervous system is particularly fascinating for many biologists because it controls animal characteristics such as movement, behavior, and coordinated thinking. Invertebrate neurobiology has traditionally been studied in specific model organisms, whilst knowledge of the broad diversity of nervous system architecture and its evolution among metazoan animals has received less attention. This is the first major reference work in the field for 50 years, bringing together many leading evolutionary neurobiologists to review the most recent research on the structure of invertebrate nervous systems and provide a comprehensive and authoritative overview for a new generation of researchers. Presented in full colour throughout, Structure and Evolution of Invertebrate Nervous Systems synthesizes and illustrates the numerous new findings that have been made possible with light and electron microscopy. These include the recent introduction of new molecular and optical techniques such as immunohistochemical staining of neuron-specific antigens and fluorescence in-situ-hybridization, combined with visualization by confocal laser scanning microscopy. New approaches to analysing the structure of the nervous system are also included such as micro-computational tomography, cryo-soft X-ray tomography, and various 3-D visualization techniques. The book follows a systematic and phylogenetic structure, covering a broad range of taxa, interspersed with chapters focusing on selected topics in nervous system functioning which are presented as research highlights and perspectives. This comprehensive reference work will be an essential companion for graduate students and researchers alike in the fields of metazoan neurobiology, morphology, zoology, phylogeny and evolution.