Author: Brian David Conrad
Publisher: American Mathematical Soc.
ISBN: 9780821886915
Category : Mathematics
Languages : en
Pages : 588
Book Description
The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.
Arithmetic Algebraic Geometry
Author: Brian David Conrad
Publisher: American Mathematical Soc.
ISBN: 9780821886915
Category : Mathematics
Languages : en
Pages : 588
Book Description
The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 9780821886915
Category : Mathematics
Languages : en
Pages : 588
Book Description
The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.
Algebraic Geometry and Arithmetic Curves
Author: Qing Liu
Publisher: Oxford University Press
ISBN: 0191547808
Category : Mathematics
Languages : en
Pages : 593
Book Description
This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.
Publisher: Oxford University Press
ISBN: 0191547808
Category : Mathematics
Languages : en
Pages : 593
Book Description
This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.
An Invitation to Arithmetic Geometry
Author: Dino Lorenzini
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 415
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 415
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Arithmetic Algebraic Geometry
Author: G., van der Geer
Publisher: Springer Science & Business Media
ISBN: 1461204577
Category : Mathematics
Languages : en
Pages : 450
Book Description
Arithmetic algebraic geometry is in a fascinating stage of growth, providing a rich variety of applications of new tools to both old and new problems. Representative of these recent developments is the notion of Arakelov geometry, a way of "completing" a variety over the ring of integers of a number field by adding fibres over the Archimedean places. Another is the appearance of the relations between arithmetic geometry and Nevanlinna theory, or more precisely between diophantine approximation theory and the value distribution theory of holomorphic maps. Research mathematicians and graduate students in algebraic geometry and number theory will find a valuable and lively view of the field in this state-of-the-art selection.
Publisher: Springer Science & Business Media
ISBN: 1461204577
Category : Mathematics
Languages : en
Pages : 450
Book Description
Arithmetic algebraic geometry is in a fascinating stage of growth, providing a rich variety of applications of new tools to both old and new problems. Representative of these recent developments is the notion of Arakelov geometry, a way of "completing" a variety over the ring of integers of a number field by adding fibres over the Archimedean places. Another is the appearance of the relations between arithmetic geometry and Nevanlinna theory, or more precisely between diophantine approximation theory and the value distribution theory of holomorphic maps. Research mathematicians and graduate students in algebraic geometry and number theory will find a valuable and lively view of the field in this state-of-the-art selection.
Algebra, Arithmetic, and Geometry
Author: Yuri Tschinkel
Publisher: Springer Science & Business Media
ISBN: 0817647473
Category : Mathematics
Languages : en
Pages : 700
Book Description
EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.
Publisher: Springer Science & Business Media
ISBN: 0817647473
Category : Mathematics
Languages : en
Pages : 700
Book Description
EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.
Number Theory and Geometry: An Introduction to Arithmetic Geometry
Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506
Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506
Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Arithmetic of Higher-Dimensional Algebraic Varieties
Author: Bjorn Poonen
Publisher: Springer Science & Business Media
ISBN: 0817681701
Category : Mathematics
Languages : en
Pages : 292
Book Description
This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.
Publisher: Springer Science & Business Media
ISBN: 0817681701
Category : Mathematics
Languages : en
Pages : 292
Book Description
This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.
Arithmetic Algebraic Geometry
Author: Jean-Louis Colliot-Thelene
Publisher: Springer
ISBN: 3540479090
Category : Mathematics
Languages : en
Pages : 218
Book Description
This volume contains three long lecture series by J.L. Colliot-Thelene, Kazuya Kato and P. Vojta. Their topics are respectively the connection between algebraic K-theory and the torsion algebraic cycles on an algebraic variety, a new approach to Iwasawa theory for Hasse-Weil L-function, and the applications of arithemetic geometry to Diophantine approximation. They contain many new results at a very advanced level, but also surveys of the state of the art on the subject with complete, detailed profs and a lot of background. Hence they can be useful to readers with very different background and experience. CONTENTS: J.L. Colliot-Thelene: Cycles algebriques de torsion et K-theorie algebrique.- K. Kato: Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions.- P. Vojta: Applications of arithmetic algebraic geometry to diophantine approximations.
Publisher: Springer
ISBN: 3540479090
Category : Mathematics
Languages : en
Pages : 218
Book Description
This volume contains three long lecture series by J.L. Colliot-Thelene, Kazuya Kato and P. Vojta. Their topics are respectively the connection between algebraic K-theory and the torsion algebraic cycles on an algebraic variety, a new approach to Iwasawa theory for Hasse-Weil L-function, and the applications of arithemetic geometry to Diophantine approximation. They contain many new results at a very advanced level, but also surveys of the state of the art on the subject with complete, detailed profs and a lot of background. Hence they can be useful to readers with very different background and experience. CONTENTS: J.L. Colliot-Thelene: Cycles algebriques de torsion et K-theorie algebrique.- K. Kato: Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions.- P. Vojta: Applications of arithmetic algebraic geometry to diophantine approximations.
Modular Forms and Fermat’s Last Theorem
Author: Gary Cornell
Publisher: Springer Science & Business Media
ISBN: 1461219744
Category : Mathematics
Languages : en
Pages : 592
Book Description
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
Publisher: Springer Science & Business Media
ISBN: 1461219744
Category : Mathematics
Languages : en
Pages : 592
Book Description
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
Arithmetic and Geometry
Author: Gisbert Wüstholz
Publisher: Princeton University Press
ISBN: 0691193770
Category : Mathematics
Languages : en
Pages : 186
Book Description
Arithmetic and Geometry presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings height and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course, taught by Peter Scholze, contains his recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces. The second course, taught by Umberto Zannier, addresses the famous Pell equation—not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians. The third course, taught by Shou-Wu Zhang, originates in the Chowla–Selberg formula, which was taken up by Gross and Zagier to relate values of the L-function for elliptic curves with the height of Heegner points on the curves. Zhang, X. Yuan, and Wei Zhang prove the Gross–Zagier formula on Shimura curves and verify the Colmez conjecture on average.
Publisher: Princeton University Press
ISBN: 0691193770
Category : Mathematics
Languages : en
Pages : 186
Book Description
Arithmetic and Geometry presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings height and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course, taught by Peter Scholze, contains his recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces. The second course, taught by Umberto Zannier, addresses the famous Pell equation—not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians. The third course, taught by Shou-Wu Zhang, originates in the Chowla–Selberg formula, which was taken up by Gross and Zagier to relate values of the L-function for elliptic curves with the height of Heegner points on the curves. Zhang, X. Yuan, and Wei Zhang prove the Gross–Zagier formula on Shimura curves and verify the Colmez conjecture on average.