Author: Mats G. Larson
Publisher: Springer Science & Business Media
ISBN: 3642332870
Category : Computers
Languages : en
Pages : 403
Book Description
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
The Finite Element Method: Theory, Implementation, and Applications
Understanding and Implementing the Finite Element Method
Author: Mark S. Gockenbach
Publisher: SIAM
ISBN: 0898716144
Category : Mathematics
Languages : en
Pages : 363
Book Description
The ?nite element method is the most powerful general-purpose technique for computing accurate solutions to partial differential equations. Understanding and Implementing the Finite Element Method is essential reading for those interested in understanding both the theory and the implementation of the ?nite element method for equilibrium problems. This book contains a thorough derivation of the finite element equations as well as sections on programming the necessary calculations, solving the finite element equations, and using a posteriori error estimates to produce validated solutions. Accessible introductions to advanced topics, such as multigrid solvers, the hierarchical basis conjugate gradient method, and adaptive mesh generation, are provided. Each chapter ends with exercises to help readers master these topics. Understanding and Implementing the Finite Element Method includes a carefully documented collection of MATLAB® programs implementing the ideas presented in the book. Readers will bene?t from a careful explanation of data structures and speci?c coding strategies and will learn how to write a ?nite element code from scratch. Students can use the MATLAB codes to experiment with the method and extend them in various ways to learn more about programming ?nite elements. This practical book should provide an excellent foundation for those who wish to delve into advanced texts on the subject, including advanced undergraduates and beginning graduate students in mathematics, engineering, and the physical sciences.Preface; Part I: The Basic Framework for Stationary Problems. Chapter 1: Some Model PDEs; Chapter 2: The weak form of a BVP; Chapter 3: The Galerkin method; Chapter 4: Piecewise polynomials and the finite element method; Chapter 5: Convergence of the finite element method; Part II Data Structures and Implementation. Chapter 6: The mesh data structure; Chapter 7: Programming the finite element method: Linear Lagrange triangles; Chapter 8: Lagrange triangles of arbitrary degree; Chapter 9: The finite element method for general BVPs; Part III: Solving the Finite Element Equations. Chapter 10: Direct solution of sparse linear systems; Chapter 11: Iterative methods: Conjugate gradients; Chapter 12: The classical stationary iterations; Chapter 13: The multigrid method; Part IV: Adaptive Methods. Chapter 14: Adaptive mesh generation; Chapter 15: Error estimators and indicators; Bibliography; Index.
Publisher: SIAM
ISBN: 0898716144
Category : Mathematics
Languages : en
Pages : 363
Book Description
The ?nite element method is the most powerful general-purpose technique for computing accurate solutions to partial differential equations. Understanding and Implementing the Finite Element Method is essential reading for those interested in understanding both the theory and the implementation of the ?nite element method for equilibrium problems. This book contains a thorough derivation of the finite element equations as well as sections on programming the necessary calculations, solving the finite element equations, and using a posteriori error estimates to produce validated solutions. Accessible introductions to advanced topics, such as multigrid solvers, the hierarchical basis conjugate gradient method, and adaptive mesh generation, are provided. Each chapter ends with exercises to help readers master these topics. Understanding and Implementing the Finite Element Method includes a carefully documented collection of MATLAB® programs implementing the ideas presented in the book. Readers will bene?t from a careful explanation of data structures and speci?c coding strategies and will learn how to write a ?nite element code from scratch. Students can use the MATLAB codes to experiment with the method and extend them in various ways to learn more about programming ?nite elements. This practical book should provide an excellent foundation for those who wish to delve into advanced texts on the subject, including advanced undergraduates and beginning graduate students in mathematics, engineering, and the physical sciences.Preface; Part I: The Basic Framework for Stationary Problems. Chapter 1: Some Model PDEs; Chapter 2: The weak form of a BVP; Chapter 3: The Galerkin method; Chapter 4: Piecewise polynomials and the finite element method; Chapter 5: Convergence of the finite element method; Part II Data Structures and Implementation. Chapter 6: The mesh data structure; Chapter 7: Programming the finite element method: Linear Lagrange triangles; Chapter 8: Lagrange triangles of arbitrary degree; Chapter 9: The finite element method for general BVPs; Part III: Solving the Finite Element Equations. Chapter 10: Direct solution of sparse linear systems; Chapter 11: Iterative methods: Conjugate gradients; Chapter 12: The classical stationary iterations; Chapter 13: The multigrid method; Part IV: Adaptive Methods. Chapter 14: Adaptive mesh generation; Chapter 15: Error estimators and indicators; Bibliography; Index.
Advanced Finite Element Methods and Applications
Author: Thomas Apel
Publisher: Springer Science & Business Media
ISBN: 3642303161
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.
Publisher: Springer Science & Business Media
ISBN: 3642303161
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.
Implementation of Finite Element Methods for Navier-Stokes Equations
Author: F. Thomasset
Publisher: Springer Science & Business Media
ISBN: 3642870473
Category : Science
Languages : en
Pages : 168
Book Description
In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.
Publisher: Springer Science & Business Media
ISBN: 3642870473
Category : Science
Languages : en
Pages : 168
Book Description
In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.
The Mathematical Theory of Finite Element Methods
Author: Susanne Brenner
Publisher: Springer Science & Business Media
ISBN: 1475736584
Category : Mathematics
Languages : en
Pages : 369
Book Description
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide
Publisher: Springer Science & Business Media
ISBN: 1475736584
Category : Mathematics
Languages : en
Pages : 369
Book Description
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide
Introduction to the Finite Element Method and Implementation with MATLAB®
Author: Gang Li
Publisher: Cambridge University Press
ISBN: 110857386X
Category : Science
Languages : en
Pages : 525
Book Description
Connecting theory with numerical techniques using MATLAB®, this practical textbook equips students with the tools required to solve finite element problems. This hands-on guide covers a wide range of engineering problems through nine well-structured chapters including solid mechanics, heat transfer and fluid dynamics; equilibrium, steady state and transient; and 1-D, 2-D and 3-D problems. Engineering problems are discussed using case study examples, which are solved using a systematic approach, both by examining the steps manually and by implementing a complete MATLAB®code. This topical coverage is supplemented by discourse on meshing with a detailed explanation and implementation of 2-D meshing algorithms. Introducing theory and numerical techniques alongside comprehensive examples this text increases engagement and provides students with the confidence needed to implement their own computer codes to solve given problems.
Publisher: Cambridge University Press
ISBN: 110857386X
Category : Science
Languages : en
Pages : 525
Book Description
Connecting theory with numerical techniques using MATLAB®, this practical textbook equips students with the tools required to solve finite element problems. This hands-on guide covers a wide range of engineering problems through nine well-structured chapters including solid mechanics, heat transfer and fluid dynamics; equilibrium, steady state and transient; and 1-D, 2-D and 3-D problems. Engineering problems are discussed using case study examples, which are solved using a systematic approach, both by examining the steps manually and by implementing a complete MATLAB®code. This topical coverage is supplemented by discourse on meshing with a detailed explanation and implementation of 2-D meshing algorithms. Introducing theory and numerical techniques alongside comprehensive examples this text increases engagement and provides students with the confidence needed to implement their own computer codes to solve given problems.
Geometrically Unfitted Finite Element Methods and Applications
Author: Stéphane P. A. Bordas
Publisher: Springer
ISBN: 3319714317
Category : Mathematics
Languages : en
Pages : 371
Book Description
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.
Publisher: Springer
ISBN: 3319714317
Category : Mathematics
Languages : en
Pages : 371
Book Description
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.
Application and Implementation of Finite Element Methods
Author: J. E. Akin
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 388
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 388
Book Description
Mathematics of Computing -- Numerical Analysis.
Automation of Finite Element Methods
Author: Jože Korelc
Publisher: Springer
ISBN: 3319390058
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
New finite elements are needed as well in research as in industry environments for thedevelopment of virtual prediction techniques. The design and implementation of novel finiteelements for specific purposes is a tedious and time consuming task, especially for nonlinearformulations. The automation of this process can help to speed up this processconsiderably since the generation of the final computer code can be accelerated by order ofseveral magnitudes.This book provides the reader with the required knowledge needed to employ modernautomatic tools like AceGen within solid mechanics in a successful way. It covers the rangefrom the theoretical background, algorithmic treatments to many different applications. Thebook is written for advanced students in the engineering field and for researchers ineducational and industrial environments.
Publisher: Springer
ISBN: 3319390058
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
New finite elements are needed as well in research as in industry environments for thedevelopment of virtual prediction techniques. The design and implementation of novel finiteelements for specific purposes is a tedious and time consuming task, especially for nonlinearformulations. The automation of this process can help to speed up this processconsiderably since the generation of the final computer code can be accelerated by order ofseveral magnitudes.This book provides the reader with the required knowledge needed to employ modernautomatic tools like AceGen within solid mechanics in a successful way. It covers the rangefrom the theoretical background, algorithmic treatments to many different applications. Thebook is written for advanced students in the engineering field and for researchers ineducational and industrial environments.
Finite Element Method
Author: Pin Tong
Publisher: Dover Books on Engineering
ISBN: 9780486466767
Category : Mathematics
Languages : en
Pages : 0
Book Description
This text introduces mathematical foundations, developing them coherently and rigorously to reveal the method's broad applications. It emphasizes use of the variational approach, providing appendixes on variational calculus and matrix algebra for a self-contained treatment. Detailed examples employ Poisson's equations and the general Sturm-Liouville problem. 1977 edition.
Publisher: Dover Books on Engineering
ISBN: 9780486466767
Category : Mathematics
Languages : en
Pages : 0
Book Description
This text introduces mathematical foundations, developing them coherently and rigorously to reveal the method's broad applications. It emphasizes use of the variational approach, providing appendixes on variational calculus and matrix algebra for a self-contained treatment. Detailed examples employ Poisson's equations and the general Sturm-Liouville problem. 1977 edition.