Author: Abraham Albert Ungar
Publisher: World Scientific
ISBN: 981124412X
Category : Mathematics
Languages : en
Pages : 775
Book Description
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.
Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity (Second Edition)
Author: Abraham Albert Ungar
Publisher: World Scientific
ISBN: 981124412X
Category : Mathematics
Languages : en
Pages : 775
Book Description
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.
Publisher: World Scientific
ISBN: 981124412X
Category : Mathematics
Languages : en
Pages : 775
Book Description
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.
A Gyrovector Space Approach to Hyperbolic Geometry
Author: Abraham Ungar
Publisher: Morgan & Claypool Publishers
ISBN: 1598298232
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry
Publisher: Morgan & Claypool Publishers
ISBN: 1598298232
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry
Springer Handbook of Spacetime
Author: Abhay Ashtekar
Publisher: Springer
ISBN: 3642419925
Category : Science
Languages : en
Pages : 883
Book Description
The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Handbook is divided into six parts. Part A: Introduction to Spacetime Structure. Part B: Foundational Issues. Part C: Spacetime Structure and Mathematics. Part D: Confronting Relativity theories with observations. Part E: General relativity and the universe. Part F: Spacetime beyond Einstein.
Publisher: Springer
ISBN: 3642419925
Category : Science
Languages : en
Pages : 883
Book Description
The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Handbook is divided into six parts. Part A: Introduction to Spacetime Structure. Part B: Foundational Issues. Part C: Spacetime Structure and Mathematics. Part D: Confronting Relativity theories with observations. Part E: General relativity and the universe. Part F: Spacetime beyond Einstein.
Einstein’s General Theory of Relativity
Author: Asghar Qadir
Publisher: Cambridge Scholars Publishing
ISBN: 1527545180
Category : Science
Languages : en
Pages : 325
Book Description
This book takes a historical approach to Einstein’s General Theory of Relativity and shows the importance that geometry has to the theory. Starting from simpler and more general considerations, it goes on to detail the latest developments in the field and considers several cutting-edge research areas. It discusses Einstein’s theory from a geometrical and a field theoretic viewpoint, before moving on to address gravitational waves, black holes and cosmology.
Publisher: Cambridge Scholars Publishing
ISBN: 1527545180
Category : Science
Languages : en
Pages : 325
Book Description
This book takes a historical approach to Einstein’s General Theory of Relativity and shows the importance that geometry has to the theory. Starting from simpler and more general considerations, it goes on to detail the latest developments in the field and considers several cutting-edge research areas. It discusses Einstein’s theory from a geometrical and a field theoretic viewpoint, before moving on to address gravitational waves, black holes and cosmology.
100 Years of Relativity
Author: Abhay Ashtekar
Publisher: World Scientific
ISBN: 9812700986
Category : Science
Languages : en
Pages : 527
Book Description
Thanks to Einstein''s relativity theories, our notions of space and time underwent profound revisions about a 100 years ago. The resulting interplay between geometry and physics has dominated all of fundamental physics since then. This volume contains contributions from leading researchers, worldwide, who have thought deeply about the nature and consequences of this interplay. The articles take a long-range view of the subject and distill the most important advances in broad terms, making them easily accessible to non-specialists. The first part is devoted to a summary of how relativity theories were born (J Stachel). The second part discusses the most dramatic ramifications of general relativity, such as black holes (P Chrusciel and R Price), space-time singularities (H Nicolai and A Rendall), gravitational waves (P Laguna and P Saulson), the large scale structure of the cosmos (T Padmanabhan); experimental status of this theory (C Will) as well as its practical application to the GPS system (N Ashby). The last part looks beyond Einstein and provides glimpses into what is in store for us in the 21st century. Contributions here include summaries of radical changes in the notions of space and time that are emerging from quantum field theory in curved space-times (Ford), string theory (T Banks), loop quantum gravity (A Ashtekar), quantum cosmology (M Bojowald), discrete approaches (Dowker, Gambini and Pullin) and twistor theory (R Penrose).
Publisher: World Scientific
ISBN: 9812700986
Category : Science
Languages : en
Pages : 527
Book Description
Thanks to Einstein''s relativity theories, our notions of space and time underwent profound revisions about a 100 years ago. The resulting interplay between geometry and physics has dominated all of fundamental physics since then. This volume contains contributions from leading researchers, worldwide, who have thought deeply about the nature and consequences of this interplay. The articles take a long-range view of the subject and distill the most important advances in broad terms, making them easily accessible to non-specialists. The first part is devoted to a summary of how relativity theories were born (J Stachel). The second part discusses the most dramatic ramifications of general relativity, such as black holes (P Chrusciel and R Price), space-time singularities (H Nicolai and A Rendall), gravitational waves (P Laguna and P Saulson), the large scale structure of the cosmos (T Padmanabhan); experimental status of this theory (C Will) as well as its practical application to the GPS system (N Ashby). The last part looks beyond Einstein and provides glimpses into what is in store for us in the 21st century. Contributions here include summaries of radical changes in the notions of space and time that are emerging from quantum field theory in curved space-times (Ford), string theory (T Banks), loop quantum gravity (A Ashtekar), quantum cosmology (M Bojowald), discrete approaches (Dowker, Gambini and Pullin) and twistor theory (R Penrose).
Relativity, Gravitation and Cosmology
Author: Ta-Pei Cheng
Publisher: Oxford University Press
ISBN: 0199573638
Category : Science
Languages : en
Pages : 452
Book Description
An introduction to Einstein's general theory of relativity, this work is structured so that interesting applications, such as gravitational lensing, black holes and cosmology, can be presented without the readers having to first learn the difficult mathematics of tensor calculus.
Publisher: Oxford University Press
ISBN: 0199573638
Category : Science
Languages : en
Pages : 452
Book Description
An introduction to Einstein's general theory of relativity, this work is structured so that interesting applications, such as gravitational lensing, black holes and cosmology, can be presented without the readers having to first learn the difficult mathematics of tensor calculus.
Special Relativity
Author: Michael Tsamparlis
Publisher: Springer Science & Business Media
ISBN: 3642038379
Category : Science
Languages : en
Pages : 605
Book Description
Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using “heavier” mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a ́ la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones! As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity.
Publisher: Springer Science & Business Media
ISBN: 3642038379
Category : Science
Languages : en
Pages : 605
Book Description
Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using “heavier” mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a ́ la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones! As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity.
The Ontology of Spacetime
Author:
Publisher: Elsevier
ISBN: 0080461883
Category : Science
Languages : en
Pages : 307
Book Description
This book contains selected papers from the First International Conference on the Ontology of Spacetime. Its fourteen chapters address two main questions: first, what is the current status of the substantivalism/relationalism debate, and second, what about the prospects of presentism and becoming within present-day physics and its philosophy? The overall tenor of the four chapters of the book's first part is that the prospects of spacetime substantivalism are bleak, although different possible positions remain with respect to the ontological status of spacetime. Part II and Part III of the book are devoted to presentism, eternalism, and becoming, from two different perspectives. In the six chapters of Part II it is argued, in different ways, that relativity theory does not have essential consequences for these issues. It certainly is true that the structure of time is different, according to relativity theory, from the one in classical theory. But that does not mean that a decision is forced between presentism and eternalism, or that becoming has proved to be an impossible concept. It may even be asked whether presentism and eternalism really offer different ontological perspectives at all. The writers of the last four chapters, in Part III, disagree. They argue that relativity theory is incompatible with becoming and presentism. Several of them come up with proposals to go beyond relativity, in order to restore the prospects of presentism.· Space and time in present-day physics and philosophy · Introduction from scratch of the debates surrounding time · Broad spectrum of approaches, coherently represented
Publisher: Elsevier
ISBN: 0080461883
Category : Science
Languages : en
Pages : 307
Book Description
This book contains selected papers from the First International Conference on the Ontology of Spacetime. Its fourteen chapters address two main questions: first, what is the current status of the substantivalism/relationalism debate, and second, what about the prospects of presentism and becoming within present-day physics and its philosophy? The overall tenor of the four chapters of the book's first part is that the prospects of spacetime substantivalism are bleak, although different possible positions remain with respect to the ontological status of spacetime. Part II and Part III of the book are devoted to presentism, eternalism, and becoming, from two different perspectives. In the six chapters of Part II it is argued, in different ways, that relativity theory does not have essential consequences for these issues. It certainly is true that the structure of time is different, according to relativity theory, from the one in classical theory. But that does not mean that a decision is forced between presentism and eternalism, or that becoming has proved to be an impossible concept. It may even be asked whether presentism and eternalism really offer different ontological perspectives at all. The writers of the last four chapters, in Part III, disagree. They argue that relativity theory is incompatible with becoming and presentism. Several of them come up with proposals to go beyond relativity, in order to restore the prospects of presentism.· Space and time in present-day physics and philosophy · Introduction from scratch of the debates surrounding time · Broad spectrum of approaches, coherently represented
Semiclassical and Stochastic Gravity
Author: Bei-Lok B. Hu
Publisher: Cambridge University Press
ISBN: 0521193575
Category : Science
Languages : en
Pages : 615
Book Description
An overview of semi-classical gravity theory and stochastic gravity as theories of quantum gravity in curved space-time.
Publisher: Cambridge University Press
ISBN: 0521193575
Category : Science
Languages : en
Pages : 615
Book Description
An overview of semi-classical gravity theory and stochastic gravity as theories of quantum gravity in curved space-time.
Dynamics of Reason
Author: Michael Friedman
Publisher: Stanford Univ Center for the Study
ISBN: 9781575862927
Category : Philosophy
Languages : en
Pages : 141
Book Description
This book introduces a new approach to the issue of radical scientific revolutions, or "paradigm-shifts," given prominence in the work of Thomas Kuhn. The book articulates a dynamical and historicized version of the conception of scientific a priori principles first developed by the philosopher Immanuel Kant. This approach defends the Enlightenment ideal of scientific objectivity and universality while simultaneously doing justice to the revolutionary changes within the sciences that have since undermined Kant's original defense of this ideal. Through a modified Kantian approach to epistemology and philosophy of science, this book opposes both Quinean naturalistic holism and the post-Kuhnian conceptual relativism that has dominated recent literature in science studies. Focussing on the development of "scientific philosophy" from Kant to Rudolf Carnap, along with the parallel developments taking place in the sciences during the same period, the author articulates a new dynamical conception of relativized a priori principles. This idea applied within the physical sciences aims to show that rational intersubjective consensus is intricately preserved across radical scientific revolutions or "paradigm-shifts and how this is achieved.
Publisher: Stanford Univ Center for the Study
ISBN: 9781575862927
Category : Philosophy
Languages : en
Pages : 141
Book Description
This book introduces a new approach to the issue of radical scientific revolutions, or "paradigm-shifts," given prominence in the work of Thomas Kuhn. The book articulates a dynamical and historicized version of the conception of scientific a priori principles first developed by the philosopher Immanuel Kant. This approach defends the Enlightenment ideal of scientific objectivity and universality while simultaneously doing justice to the revolutionary changes within the sciences that have since undermined Kant's original defense of this ideal. Through a modified Kantian approach to epistemology and philosophy of science, this book opposes both Quinean naturalistic holism and the post-Kuhnian conceptual relativism that has dominated recent literature in science studies. Focussing on the development of "scientific philosophy" from Kant to Rudolf Carnap, along with the parallel developments taking place in the sciences during the same period, the author articulates a new dynamical conception of relativized a priori principles. This idea applied within the physical sciences aims to show that rational intersubjective consensus is intricately preserved across radical scientific revolutions or "paradigm-shifts and how this is achieved.