Analysis of the Mechanistic-empirical Pavement Design Guide Performance Predictions

Analysis of the Mechanistic-empirical Pavement Design Guide Performance Predictions PDF Author: Stacey D. Diefenderfer
Publisher:
ISBN:
Category : Binders (Materials)
Languages : en
Pages : 44

Get Book Here

Book Description
The Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures (MEPDG) is an improved methodology for pavement design and the evaluation of paving materials. The Virginia Department of Transportation (VDOT) is expecting to transition to using the MEPDG methodology in the near future. The purpose of this research was to support this implementation effort. A catalog of mixture properties from 11 asphalt mixtures (3 surface mixtures, 4 intermediate mixtures, and 4 base mixtures) was compiled along with the associated asphalt binder properties to provide input values. The predicted fatigue and rutting distresses were used to evaluate the sensitivity of the MEPDG software to differences in the mixture properties and to assess the future needs for implementation of the MEPDG. Two pavement sections were modeled: one on a primary roadway and one on an interstate roadway. The MEPDG was used with the default calibration factors. Pavement distress data were compiled for the interstate and primary route corresponding to the modeled sections and were compared to the MEPDG-predicted distresses. Predicted distress quantities for fatigue cracking and rutting were compared to the calculated distress model predictive errors to determine if there were significant differences between material property input levels. There were differences between all rutting and fatigue predictions using Level 1, 2, and 3 asphalt material inputs, although not statistically significant. Various combinations of Level 3 inputs showed expected trends in rutting predictions when increased binder grades were used, but the differences were not statistically significant when the calibration model error was considered. Pavement condition data indicated that fatigue distress predictions were approximately comparable to the pavement condition data for the interstate pavement structure, but fatigue was over-predicted for the primary route structure. Fatigue model predictive errors were greater than the distress predictions for all predictions. Based on the findings of this study, further refinement or calibration of the predictive models is necessary before the benefits associated with their use can be realized. A local calibration process should be performed to provide calibration and verification of the predictive models so that they may accurately predict the conditions of Virginia roadways. Until then, implementation using Level 3 inputs is recommended. If the models are modified, additional evaluation will be necessary to determine if the other recommendations of this study are impacted. Further studies should be performed using Level 1 and Level 2 input properties of additional asphalt mixtures to validate the trends seen in the Level 3 input predictions and isolate the effects of binder grade changes on the predicted distresses. Further, additional asphalt mixture and binder properties should be collected to populate fully a catalog for VDOT's future implementation use. The implementation of these recommendations and use of the MEPDG are expected to provide VDOT with a more efficient and effective means for pavement design and analysis. The use of optimal pavement designs will provide economic benefits in terms of initial construction and lifetime maintenance costs.

Mechanistic-empirical Pavement Design Guide

Mechanistic-empirical Pavement Design Guide PDF Author: American Association of State Highway and Transportation Officials
Publisher: AASHTO
ISBN: 156051423X
Category : Pavements
Languages : en
Pages : 218

Get Book Here

Book Description


Analysis of the Mechanistic-empirical Pavement Design Guide Performance Predictions

Analysis of the Mechanistic-empirical Pavement Design Guide Performance Predictions PDF Author: Stacey D. Diefenderfer
Publisher:
ISBN:
Category : Binders (Materials)
Languages : en
Pages : 44

Get Book Here

Book Description
The Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures (MEPDG) is an improved methodology for pavement design and the evaluation of paving materials. The Virginia Department of Transportation (VDOT) is expecting to transition to using the MEPDG methodology in the near future. The purpose of this research was to support this implementation effort. A catalog of mixture properties from 11 asphalt mixtures (3 surface mixtures, 4 intermediate mixtures, and 4 base mixtures) was compiled along with the associated asphalt binder properties to provide input values. The predicted fatigue and rutting distresses were used to evaluate the sensitivity of the MEPDG software to differences in the mixture properties and to assess the future needs for implementation of the MEPDG. Two pavement sections were modeled: one on a primary roadway and one on an interstate roadway. The MEPDG was used with the default calibration factors. Pavement distress data were compiled for the interstate and primary route corresponding to the modeled sections and were compared to the MEPDG-predicted distresses. Predicted distress quantities for fatigue cracking and rutting were compared to the calculated distress model predictive errors to determine if there were significant differences between material property input levels. There were differences between all rutting and fatigue predictions using Level 1, 2, and 3 asphalt material inputs, although not statistically significant. Various combinations of Level 3 inputs showed expected trends in rutting predictions when increased binder grades were used, but the differences were not statistically significant when the calibration model error was considered. Pavement condition data indicated that fatigue distress predictions were approximately comparable to the pavement condition data for the interstate pavement structure, but fatigue was over-predicted for the primary route structure. Fatigue model predictive errors were greater than the distress predictions for all predictions. Based on the findings of this study, further refinement or calibration of the predictive models is necessary before the benefits associated with their use can be realized. A local calibration process should be performed to provide calibration and verification of the predictive models so that they may accurately predict the conditions of Virginia roadways. Until then, implementation using Level 3 inputs is recommended. If the models are modified, additional evaluation will be necessary to determine if the other recommendations of this study are impacted. Further studies should be performed using Level 1 and Level 2 input properties of additional asphalt mixtures to validate the trends seen in the Level 3 input predictions and isolate the effects of binder grade changes on the predicted distresses. Further, additional asphalt mixture and binder properties should be collected to populate fully a catalog for VDOT's future implementation use. The implementation of these recommendations and use of the MEPDG are expected to provide VDOT with a more efficient and effective means for pavement design and analysis. The use of optimal pavement designs will provide economic benefits in terms of initial construction and lifetime maintenance costs.

Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide

Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide PDF Author:
Publisher: AASHTO
ISBN: 1560514493
Category : Technology & Engineering
Languages : en
Pages : 202

Get Book Here

Book Description
This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.

Mechanistic-empirical Pavement Design Guide Flexible Pavement Performance Prediction Models for Montana: Reference manual

Mechanistic-empirical Pavement Design Guide Flexible Pavement Performance Prediction Models for Montana: Reference manual PDF Author: Harold L. Von Quintus
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages :

Get Book Here

Book Description


Implementation Plan for the New Mechanistic-empirical Pavement Design Guide

Implementation Plan for the New Mechanistic-empirical Pavement Design Guide PDF Author: Y. Richard Kim
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 690

Get Book Here

Book Description


Mechanistic-empirical Pavement Design Guide Implementation Plan

Mechanistic-empirical Pavement Design Guide Implementation Plan PDF Author: Todd E. Hoerner
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 324

Get Book Here

Book Description
As AASH is expected to eventually adopt the MEPDG at its primary pavement design method, it is critical that the SDDOT become familiar with the MEPGD documentation and associated design software. The research conducted under this project was a first step toward achieving this goal.

Mechanistic-empirical Pavement Design Guide Flexible Pavement Performance Prediction Models for Montana

Mechanistic-empirical Pavement Design Guide Flexible Pavement Performance Prediction Models for Montana PDF Author: James S. Moulthrop
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 4

Get Book Here

Book Description


Recommended Mechanistic-empirical Pavement Design Guide and Software

Recommended Mechanistic-empirical Pavement Design Guide and Software PDF Author: National Cooperative Highway Research Program
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 6

Get Book Here

Book Description
"This digest announces the availability of key products from NCHRP Project 1-37A, 'Development of the 2002 guide for the design of new and rehabilitated pavement structures: phase II, ' for evaluation"--Page 1 excerpt

Local Calibration of Mechanistic Empirical Pavement Design Guide for North Eastern United States

Local Calibration of Mechanistic Empirical Pavement Design Guide for North Eastern United States PDF Author: Shariq A. Momin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Cooperative Highway Research Program (NCHRP) 1-37A project is based on mechanistic-empirical analysis of the pavement structure to predict the performance of the pavement under different sets of conditions (traffic, structure and environment). MEPDG takes into account the advanced modeling concepts and pavement performance models in performing the analysis and design of pavement. The mechanistic part of the design concept relies on the application of engineering mechanics to calculate stresses, strains and deformations in the pavement structure induced by the vehicle loads. The empirical part of the concept is based on laboratory developed performance models that are calibrated with the observed distresses in the in-service pavements with known structural properties, traffic loadings, and performances. These models in the MEPDG were calibrated using a national database of pavement performance data (Long Term Pavement Performance, LTPP) and will provide design solution for pavements with a national average performance. In order to improve the performance prediction of the models and the efficiency of the design for a given state, it is necessary to calibrate it to local conditions by taking into consideration locally available materials, traffic information and the environmental conditions. The objective of this study was to calibrate the MEPDG flexible pavement performance models to local conditions of Northeastern region of United States. To achieve this, seventeen pavement sections were selected for the calibration process and the relevant data (structural, traffic, climatic and pavement performance) was obtained from the LTPP database. MEPDG software (Version 1.1) simulation runs were made using the nationally calibrated coefficients and the MEPDG predicted distresses were compared with the LTPP measured distresses (rutting, alligator and longitudinal cracking, thermal cracking and IRI). The predicted distresses showed fair agreement with the measured distresses but still significant differences were found. The difference between the measured and the predicted distresses were minimized through recalibration of the MEPDG distress models. For the permanent deformation models of each layer, a simple linear regression with no intercept was performed and a new set of model coefficients (ßr1, ßGB, and ßSG) for asphalt concrete, granular base and subgrade layer models were calculated. The calibration of alligator (bottom-up fatigue cracking) and longitudinal (topdown fatigue cracking) was done by deriving the appropriate model coefficients (C1, C2, and C4) since the fatigue damage is given in MEDPG software output. Thermal cracking model was not calibrated since the measured transverse cracking data in the LTPP database did not increase with time, as expected to increase with time. The calibration of IRI model was done by computing the model coefficients (C1, C2, C3, and C4) based on other distresses (rutting, total fatigue cracking, and transverse cracking) by performing a simple linear regression.

Mechanistic-empirical Pavement Design Guide Flexible Pavement Performance Prediction Models for Montana: Field guide

Mechanistic-empirical Pavement Design Guide Flexible Pavement Performance Prediction Models for Montana: Field guide PDF Author: Harold L. Von Quintus
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages :

Get Book Here

Book Description