Author: Georges T. Nehmetallah
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9781628416923
Category : Compressed sensing (Telecommunication).
Languages : en
Pages : 0
Book Description
Holography is the only truly three-dimensional imaging method available, and MATLAB has become the programming language of choice for engineering and physics students. Whereas most books solely address the theory behind these 3D imaging techniques, this monograph concentrates on the exact code needed to perform complex mathematical and physical operations.
Analog and Digital Holography with MATLAB
Author: Georges T. Nehmetallah
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9781628416923
Category : Compressed sensing (Telecommunication).
Languages : en
Pages : 0
Book Description
Holography is the only truly three-dimensional imaging method available, and MATLAB has become the programming language of choice for engineering and physics students. Whereas most books solely address the theory behind these 3D imaging techniques, this monograph concentrates on the exact code needed to perform complex mathematical and physical operations.
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9781628416923
Category : Compressed sensing (Telecommunication).
Languages : en
Pages : 0
Book Description
Holography is the only truly three-dimensional imaging method available, and MATLAB has become the programming language of choice for engineering and physics students. Whereas most books solely address the theory behind these 3D imaging techniques, this monograph concentrates on the exact code needed to perform complex mathematical and physical operations.
Introduction to Modern Digital Holography
Author: Ting-Chung Poon
Publisher: Cambridge University Press
ISBN: 1107016703
Category : Computers
Languages : en
Pages : 227
Book Description
Building up from the basic principles of optics, this straightforward introduction to digital holography, aimed at graduate students, engineers and researchers, describes modern techniques and applications, plus all the necessary underlying theory. Supporting Matlab code is available for download online, and homework problems are accompanied by an instructor solution manual.
Publisher: Cambridge University Press
ISBN: 1107016703
Category : Computers
Languages : en
Pages : 227
Book Description
Building up from the basic principles of optics, this straightforward introduction to digital holography, aimed at graduate students, engineers and researchers, describes modern techniques and applications, plus all the necessary underlying theory. Supporting Matlab code is available for download online, and homework problems are accompanied by an instructor solution manual.
Analog and Digital Holography with MATLAB
Author: Georges T. Nehmetallah
Publisher:
ISBN: 9781628416596
Category : Holography
Languages : en
Pages :
Book Description
Holography is the only truly three-dimensional imaging method available, and MATLAB has become the programming language of choice for engineering and physics students. Whereas most books solely address the theory behind these 3D imaging techniques, this monograph concentrates on the exact code needed to perform complex mathematical and physical operations. The text and included examples spare students and researchers from the tedium of programming complex equations so that they can focus on their experiments instead. Topics include a brief introduction to the history, types, and materials of holography; the basic principles of analog and digital holography; a detailed explanation of famous fringe-deciphering techniques for holographic interferometry; holographic and non-holographic 3D display technologies; and cutting-edge concepts such as compressive, coherence, nonlinear, and polarization holography.
Publisher:
ISBN: 9781628416596
Category : Holography
Languages : en
Pages :
Book Description
Holography is the only truly three-dimensional imaging method available, and MATLAB has become the programming language of choice for engineering and physics students. Whereas most books solely address the theory behind these 3D imaging techniques, this monograph concentrates on the exact code needed to perform complex mathematical and physical operations. The text and included examples spare students and researchers from the tedium of programming complex equations so that they can focus on their experiments instead. Topics include a brief introduction to the history, types, and materials of holography; the basic principles of analog and digital holography; a detailed explanation of famous fringe-deciphering techniques for holographic interferometry; holographic and non-holographic 3D display technologies; and cutting-edge concepts such as compressive, coherence, nonlinear, and polarization holography.
Introduction to Modern Digital Holography
Author: Ting-Chung Poon
Publisher: Cambridge University Press
ISBN: 1107729114
Category : Science
Languages : en
Pages : 227
Book Description
Get up to speed with digital holography with this concise and straightforward introduction to modern techniques and conventions. Building up from the basic principles of optics, this book describes key techniques in digital holography, such as phase-shifting holography, low-coherence holography, diffraction tomographic holography and optical scanning holography, discussing their practical applications, and accompanied by all the theory necessary to understand the underlying principles at work. A further chapter covers advanced techniques for producing computer-generated holograms. Extensive Matlab code is integrated with the text throughout and available for download online, illustrating both theoretical results and practical considerations such as aliasing, zero padding and sampling. Accompanied by end-of-chapter problems and an online solutions manual for instructors, this is an indispensable resource for students, researchers and engineers in the fields of optical image processing and digital holography.
Publisher: Cambridge University Press
ISBN: 1107729114
Category : Science
Languages : en
Pages : 227
Book Description
Get up to speed with digital holography with this concise and straightforward introduction to modern techniques and conventions. Building up from the basic principles of optics, this book describes key techniques in digital holography, such as phase-shifting holography, low-coherence holography, diffraction tomographic holography and optical scanning holography, discussing their practical applications, and accompanied by all the theory necessary to understand the underlying principles at work. A further chapter covers advanced techniques for producing computer-generated holograms. Extensive Matlab code is integrated with the text throughout and available for download online, illustrating both theoretical results and practical considerations such as aliasing, zero padding and sampling. Accompanied by end-of-chapter problems and an online solutions manual for instructors, this is an indispensable resource for students, researchers and engineers in the fields of optical image processing and digital holography.
Augmented Reality and Its Application
Author: Dragan Cvetković
Publisher: BoD – Books on Demand
ISBN: 1839697040
Category : Computers
Languages : en
Pages : 210
Book Description
Augmented Reality (AR) is a discipline that includes the interactive experience of a real-world environment, in which real-world objects and elements are enhanced using computer perceptual information. It has many potential applications in education, medicine, and engineering, among other fields. This book explores these potential uses, presenting case studies and investigations of AR for vocational training, emergency response, interior design, architecture, and much more.
Publisher: BoD – Books on Demand
ISBN: 1839697040
Category : Computers
Languages : en
Pages : 210
Book Description
Augmented Reality (AR) is a discipline that includes the interactive experience of a real-world environment, in which real-world objects and elements are enhanced using computer perceptual information. It has many potential applications in education, medicine, and engineering, among other fields. This book explores these potential uses, presenting case studies and investigations of AR for vocational training, emergency response, interior design, architecture, and much more.
Experimental Mechanics
Author: Emmanuel E. Gdoutos
Publisher: Springer Nature
ISBN: 3030894665
Category : Science
Languages : en
Pages : 318
Book Description
The book presents in a clear, simple, straightforward, novel and unified manner the most used methods of experimental mechanics of solids for the determination of displacements, strains and stresses. Emphasis is given on the principles of operation of the various methods, not in their applications to engineering problems. The book is divided into sixteen chapters which include strain gages, basic optics, geometric and interferometric moiré, optical methods (photoelasticity, interferometry, holography, caustics, speckle methods, digital image correlation), thermoelastic stress analysis, indentation, optical fibers, nondestructive testing, and residual stresses. The book will be used not only as a learning tool, but as a basis on which the researcher, the engineer, the experimentalist, the student can develop their new own ideas to promote research in experimental mechanics of solids.
Publisher: Springer Nature
ISBN: 3030894665
Category : Science
Languages : en
Pages : 318
Book Description
The book presents in a clear, simple, straightforward, novel and unified manner the most used methods of experimental mechanics of solids for the determination of displacements, strains and stresses. Emphasis is given on the principles of operation of the various methods, not in their applications to engineering problems. The book is divided into sixteen chapters which include strain gages, basic optics, geometric and interferometric moiré, optical methods (photoelasticity, interferometry, holography, caustics, speckle methods, digital image correlation), thermoelastic stress analysis, indentation, optical fibers, nondestructive testing, and residual stresses. The book will be used not only as a learning tool, but as a basis on which the researcher, the engineer, the experimentalist, the student can develop their new own ideas to promote research in experimental mechanics of solids.
Theoretical Foundations of Digital Imaging Using MATLAB®
Author: Leonid P. Yaroslavsky
Publisher: CRC Press
ISBN: 1439861404
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
With the ubiquitous use of digital imaging, a new profession has emerged: imaging engineering. Designed for newcomers to imaging science and engineering, Theoretical Foundations of Digital Imaging Using MATLAB® treats the theory of digital imaging as a specific branch of science. It covers the subject in its entirety, from image formation to image perfecting. Based on the author’s 50 years of working and teaching in the field, the text first addresses the problem of converting images into digital signals that can be stored, transmitted, and processed on digital computers. It then explains how to adequately represent image transformations on computers. After presenting several examples of computational imaging, including numerical reconstruction of holograms and virtual image formation through computer-generated display holograms, the author introduces methods for image perfect resampling and building continuous image models. He also examines the fundamental problem of the optimal estimation of image parameters, such as how to localize targets in images. The book concludes with a comprehensive discussion of linear and nonlinear filtering methods for image perfecting and enhancement. Helping you master digital imaging, this book presents a unified theoretical basis for understanding and designing methods of imaging and image processing. To facilitate a deeper understanding of the major results, it offers a number of exercises supported by MATLAB programs, with the code available at www.crcpress.com.
Publisher: CRC Press
ISBN: 1439861404
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
With the ubiquitous use of digital imaging, a new profession has emerged: imaging engineering. Designed for newcomers to imaging science and engineering, Theoretical Foundations of Digital Imaging Using MATLAB® treats the theory of digital imaging as a specific branch of science. It covers the subject in its entirety, from image formation to image perfecting. Based on the author’s 50 years of working and teaching in the field, the text first addresses the problem of converting images into digital signals that can be stored, transmitted, and processed on digital computers. It then explains how to adequately represent image transformations on computers. After presenting several examples of computational imaging, including numerical reconstruction of holograms and virtual image formation through computer-generated display holograms, the author introduces methods for image perfect resampling and building continuous image models. He also examines the fundamental problem of the optimal estimation of image parameters, such as how to localize targets in images. The book concludes with a comprehensive discussion of linear and nonlinear filtering methods for image perfecting and enhancement. Helping you master digital imaging, this book presents a unified theoretical basis for understanding and designing methods of imaging and image processing. To facilitate a deeper understanding of the major results, it offers a number of exercises supported by MATLAB programs, with the code available at www.crcpress.com.
Label-Free Super-Resolution Microscopy
Author: Vasily Astratov
Publisher: Springer Nature
ISBN: 3030217221
Category : Science
Languages : en
Pages : 498
Book Description
This book presents the advances in super-resolution microscopy in physics and biomedical optics for nanoscale imaging. In the last decade, super-resolved fluorescence imaging has opened new horizons in improving the resolution of optical microscopes far beyond the classical diffraction limit, leading to the Nobel Prize in Chemistry in 2014. This book represents the first comprehensive review of a different type of super-resolved microscopy, which does not rely on using fluorescent markers. Such label-free super-resolution microscopy enables potentially even broader applications in life sciences and nanoscale imaging, but is much more challenging and it is based on different physical concepts and approaches. A unique feature of this book is that it combines insights into mechanisms of label-free super-resolution with a vast range of applications from fast imaging of living cells to inorganic nanostructures. This book can be used by researchers in biological and medical physics. Due to its logically organizational structure, it can be also used as a teaching tool in graduate and upper-division undergraduate-level courses devoted to super-resolved microscopy, nanoscale imaging, microscopy instrumentation, and biomedical imaging.
Publisher: Springer Nature
ISBN: 3030217221
Category : Science
Languages : en
Pages : 498
Book Description
This book presents the advances in super-resolution microscopy in physics and biomedical optics for nanoscale imaging. In the last decade, super-resolved fluorescence imaging has opened new horizons in improving the resolution of optical microscopes far beyond the classical diffraction limit, leading to the Nobel Prize in Chemistry in 2014. This book represents the first comprehensive review of a different type of super-resolved microscopy, which does not rely on using fluorescent markers. Such label-free super-resolution microscopy enables potentially even broader applications in life sciences and nanoscale imaging, but is much more challenging and it is based on different physical concepts and approaches. A unique feature of this book is that it combines insights into mechanisms of label-free super-resolution with a vast range of applications from fast imaging of living cells to inorganic nanostructures. This book can be used by researchers in biological and medical physics. Due to its logically organizational structure, it can be also used as a teaching tool in graduate and upper-division undergraduate-level courses devoted to super-resolved microscopy, nanoscale imaging, microscopy instrumentation, and biomedical imaging.
Advanced Optical Instruments and Techniques
Author: Daniel Malacara Hernández
Publisher: CRC Press
ISBN: 1351646273
Category : Technology & Engineering
Languages : en
Pages : 1136
Book Description
Advanced Optical Instruments and Techniques includes twenty-three chapters providing processes, methods, and procedures of cutting-edge optics engineering design and instrumentation. Topics include biomedical instrumentation and basic and advanced interferometry. Optical metrology is discussed, including point and full-field methods. Active and adaptive optics, holography, radiometry, the human eye, and visible light are covered as well as materials, including photonics, nanophotonics, anisotropic materials, and metamaterials.
Publisher: CRC Press
ISBN: 1351646273
Category : Technology & Engineering
Languages : en
Pages : 1136
Book Description
Advanced Optical Instruments and Techniques includes twenty-three chapters providing processes, methods, and procedures of cutting-edge optics engineering design and instrumentation. Topics include biomedical instrumentation and basic and advanced interferometry. Optical metrology is discussed, including point and full-field methods. Active and adaptive optics, holography, radiometry, the human eye, and visible light are covered as well as materials, including photonics, nanophotonics, anisotropic materials, and metamaterials.
Hardware Acceleration of Computational Holography
Author: Tomoyoshi Shimobaba
Publisher: Springer Nature
ISBN: 981991938X
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
This book explains the hardware implementation of computational holography and hardware acceleration techniques, along with a number ofconcrete example source codes that enable fast computation. Computational holography includes computer-based holographictechnologies such as computer-generated hologram and digital holography, for which acceleration of wave-optics computation is highly desirable.This book describes hardware implementations on CPUs (Central Processing Units), GPUs (Graphics Processing Units) and FPGAs (Field ProgrammableGate Arrays). This book is intended for readers involved in holography as well as anyone interested in hardware acceleration.
Publisher: Springer Nature
ISBN: 981991938X
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
This book explains the hardware implementation of computational holography and hardware acceleration techniques, along with a number ofconcrete example source codes that enable fast computation. Computational holography includes computer-based holographictechnologies such as computer-generated hologram and digital holography, for which acceleration of wave-optics computation is highly desirable.This book describes hardware implementations on CPUs (Central Processing Units), GPUs (Graphics Processing Units) and FPGAs (Field ProgrammableGate Arrays). This book is intended for readers involved in holography as well as anyone interested in hardware acceleration.