Author: Carolyn A. MacDonald
Publisher: Princeton University Press
ISBN: 1400887739
Category : Science
Languages : en
Pages : 368
Book Description
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials. Common aspects of diverse phenomena emphasized Theoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers Examples and problems include applications drawn from medicine, astronomy, and materials analysis Detailed solutions are provided for all examples and problems
An Introduction to X-Ray Physics, Optics, and Applications
Author: Carolyn A. MacDonald
Publisher: Princeton University Press
ISBN: 1400887739
Category : Science
Languages : en
Pages : 368
Book Description
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials. Common aspects of diverse phenomena emphasized Theoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers Examples and problems include applications drawn from medicine, astronomy, and materials analysis Detailed solutions are provided for all examples and problems
Publisher: Princeton University Press
ISBN: 1400887739
Category : Science
Languages : en
Pages : 368
Book Description
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials. Common aspects of diverse phenomena emphasized Theoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers Examples and problems include applications drawn from medicine, astronomy, and materials analysis Detailed solutions are provided for all examples and problems
An Introduction to X-ray Physics, Optics, and Applications
Author: Carolyn Ann MacDonald
Publisher:
ISBN: 9781523124596
Category : Optical detectors
Languages : en
Pages :
Book Description
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials.Common aspects of diverse phenomena emphasizedTheoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchersExamples and problems include applications drawn from medicine, astronomy, and materials analysisDetailed solutions are provided for all examples and problems.
Publisher:
ISBN: 9781523124596
Category : Optical detectors
Languages : en
Pages :
Book Description
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials.Common aspects of diverse phenomena emphasizedTheoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchersExamples and problems include applications drawn from medicine, astronomy, and materials analysisDetailed solutions are provided for all examples and problems.
An Introduction to X-Ray Physics, Optics, and Applications
Author: Carolyn A. MacDonald
Publisher: Princeton University Press
ISBN: 0691139652
Category : Science
Languages : en
Pages : 366
Book Description
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials. Common aspects of diverse phenomena emphasized Theoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers Examples and problems include applications drawn from medicine, astronomy, and materials analysis Detailed solutions are provided for all examples and problems
Publisher: Princeton University Press
ISBN: 0691139652
Category : Science
Languages : en
Pages : 366
Book Description
In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis. Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix. Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials. Common aspects of diverse phenomena emphasized Theoretical development tied to practical applications Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers Examples and problems include applications drawn from medicine, astronomy, and materials analysis Detailed solutions are provided for all examples and problems
X-Ray Optics
Author: Yuri Shvyd'ko
Publisher: Springer
ISBN: 3540408908
Category : Science
Languages : en
Pages : 416
Book Description
The use of x rays has moved in the forefront of science and technology in the second half of the 20th century. This progress has been greatly stimulated by the advent of synchrotron x-ray sources in the 1960s. The undulator-based synchrotron radiation sources which have appeared in the last decade of the 20th century gave a new impetus to such development. The brilliance of the x-ray sources has increased by 12 orders of magnitude in 40 years and this trend does not show any signs of stagnation. The future x-ray sources of the 21th century based on free-electron lasers driven by linear accelerators will provide sub-picosecond radiation pulses with by many orders of magnitude higher brilliance and full transverse coherence. The x-ray sources of the newest generation offer a possibility to realize more than ever before the great potential of x-ray optics and, as a consequence, to elaborate new sophisticated instrumentation with unprecedented resolution and eventually to move in new directions of research in x-ray technology, materials science, fundamental physics, life sciences, etc.
Publisher: Springer
ISBN: 3540408908
Category : Science
Languages : en
Pages : 416
Book Description
The use of x rays has moved in the forefront of science and technology in the second half of the 20th century. This progress has been greatly stimulated by the advent of synchrotron x-ray sources in the 1960s. The undulator-based synchrotron radiation sources which have appeared in the last decade of the 20th century gave a new impetus to such development. The brilliance of the x-ray sources has increased by 12 orders of magnitude in 40 years and this trend does not show any signs of stagnation. The future x-ray sources of the 21th century based on free-electron lasers driven by linear accelerators will provide sub-picosecond radiation pulses with by many orders of magnitude higher brilliance and full transverse coherence. The x-ray sources of the newest generation offer a possibility to realize more than ever before the great potential of x-ray optics and, as a consequence, to elaborate new sophisticated instrumentation with unprecedented resolution and eventually to move in new directions of research in x-ray technology, materials science, fundamental physics, life sciences, etc.
X-Ray and Neutron Reflectivity: Principles and Applications
Author: Jean Daillant
Publisher: Springer Science & Business Media
ISBN: 3540486968
Category : Science
Languages : en
Pages : 347
Book Description
The reflection of and neutrons from surfaces has existed as an x-rays exp- imental for almost it is in the last technique fifty Nevertheless, only years. decade that these methods have become as of enormously popular probes This the surfaces and interfaces. to be due to of several appears convergence of intense different circumstances. These include the more n- availability be measured orders tron and sources that can over (so reflectivity x-ray many of and the much weaker surface diffuse can now also be magnitude scattering of thin films and studied in some the detail); growing importance multil- basic the realization of the ers in both and technology research; important which in the of surfaces and and role roughness plays properties interfaces; the of statistical models to characterize the of finally development topology its and its characterization from on roughness, dependence growth processes The of and to surface scattering experiments. ability x-rays neutro4s study four five orders of in scale of surfaces over to magnitude length regardless their and also their to ability probe environment, temperature, pressure, etc. , makes these the choice for buried interfaces often probes preferred obtaining information about the microstructure of often in statistical a global surfaces, the local This is manner to complementary imaging microscopy techniques, of such studies in the literature witnessed the veritable by explosion published the last few Thus these lectures will useful for over a resource years.
Publisher: Springer Science & Business Media
ISBN: 3540486968
Category : Science
Languages : en
Pages : 347
Book Description
The reflection of and neutrons from surfaces has existed as an x-rays exp- imental for almost it is in the last technique fifty Nevertheless, only years. decade that these methods have become as of enormously popular probes This the surfaces and interfaces. to be due to of several appears convergence of intense different circumstances. These include the more n- availability be measured orders tron and sources that can over (so reflectivity x-ray many of and the much weaker surface diffuse can now also be magnitude scattering of thin films and studied in some the detail); growing importance multil- basic the realization of the ers in both and technology research; important which in the of surfaces and and role roughness plays properties interfaces; the of statistical models to characterize the of finally development topology its and its characterization from on roughness, dependence growth processes The of and to surface scattering experiments. ability x-rays neutro4s study four five orders of in scale of surfaces over to magnitude length regardless their and also their to ability probe environment, temperature, pressure, etc. , makes these the choice for buried interfaces often probes preferred obtaining information about the microstructure of often in statistical a global surfaces, the local This is manner to complementary imaging microscopy techniques, of such studies in the literature witnessed the veritable by explosion published the last few Thus these lectures will useful for over a resource years.
X-Rays and Extreme Ultraviolet Radiation
Author: David Attwood
Publisher: Cambridge University Press
ISBN: 1107062896
Category : Science
Languages : en
Pages : 655
Book Description
Master the physics and understand the current applications of modern X-ray and EUV sources with this fully updated second edition.
Publisher: Cambridge University Press
ISBN: 1107062896
Category : Science
Languages : en
Pages : 655
Book Description
Master the physics and understand the current applications of modern X-ray and EUV sources with this fully updated second edition.
X-Ray Imaging
Author: Harry E. Martz
Publisher: CRC Press
ISBN: 1420009761
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
While books on the medical applications of x-ray imaging exist, there is not one currently available that focuses on industrial applications. Full of color images that show clear spectrometry and rich with applications, X-Ray Imaging fills the need for a comprehensive work on modern industrial x-ray imaging. It reviews the fundamental science of x-ray imaging and addresses equipment and system configuration. Useful to a broad range of radiation imaging practitioners, the book looks at the rapid development and deployment of digital x-ray imaging system.
Publisher: CRC Press
ISBN: 1420009761
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
While books on the medical applications of x-ray imaging exist, there is not one currently available that focuses on industrial applications. Full of color images that show clear spectrometry and rich with applications, X-Ray Imaging fills the need for a comprehensive work on modern industrial x-ray imaging. It reviews the fundamental science of x-ray imaging and addresses equipment and system configuration. Useful to a broad range of radiation imaging practitioners, the book looks at the rapid development and deployment of digital x-ray imaging system.
Coherent X-Ray Optics
Author: David Paganin
Publisher: Oxford University Press
ISBN: 0198567286
Category : Medical
Languages : en
Pages : 424
Book Description
X-ray optics is undergoing a renaissance, which may be paralleled to that experienced by visible-light optics following the invention of the laser. The associated surge of activity in "coherent" x-ray optics has been documented in this monograph, the first of its type in the field.
Publisher: Oxford University Press
ISBN: 0198567286
Category : Medical
Languages : en
Pages : 424
Book Description
X-ray optics is undergoing a renaissance, which may be paralleled to that experienced by visible-light optics following the invention of the laser. The associated surge of activity in "coherent" x-ray optics has been documented in this monograph, the first of its type in the field.
X-Ray Microscopy
Author: Chris Jacobsen
Publisher: Cambridge University Press
ISBN: 1107076579
Category : Medical
Languages : en
Pages : 594
Book Description
A complete introduction to x-ray microscopy, covering optics, 3D and chemical imaging, lensless imaging, radiation damage, and applications.
Publisher: Cambridge University Press
ISBN: 1107076579
Category : Medical
Languages : en
Pages : 594
Book Description
A complete introduction to x-ray microscopy, covering optics, 3D and chemical imaging, lensless imaging, radiation damage, and applications.
Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays
Author: Bernhard Adams
Publisher: Springer Science & Business Media
ISBN: 9781402074752
Category : Science
Languages : en
Pages : 364
Book Description
Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays is an introduction to cutting-edge science that is beginning to emerge on state-of-the-art synchrotron radiation facilities and will come to flourish with the x-ray free-electron lasers currently being planned. It is intended for the use by scientists at synchrotron radiation facilities working with the combination of x-rays and lasers and those preparing for the science at x-ray free-electron lasers. In the past decade synchrotron radiation sources have experienced a tremendous increase in their brilliance and other figures of merit. This progress, driven strongly by the scientific applications, is still going on and may actually be accelerating with the advent of x-ray free-electron lasers. As a result, a confluence of x-ray and laser physics is taking place, due to the increasing importance of laser concepts, such as coherence and nonlinear optics to the x-ray community and the importance of x-ray optics to the laser-generation of ultrashort pulses of x-rays.
Publisher: Springer Science & Business Media
ISBN: 9781402074752
Category : Science
Languages : en
Pages : 364
Book Description
Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays is an introduction to cutting-edge science that is beginning to emerge on state-of-the-art synchrotron radiation facilities and will come to flourish with the x-ray free-electron lasers currently being planned. It is intended for the use by scientists at synchrotron radiation facilities working with the combination of x-rays and lasers and those preparing for the science at x-ray free-electron lasers. In the past decade synchrotron radiation sources have experienced a tremendous increase in their brilliance and other figures of merit. This progress, driven strongly by the scientific applications, is still going on and may actually be accelerating with the advent of x-ray free-electron lasers. As a result, a confluence of x-ray and laser physics is taking place, due to the increasing importance of laser concepts, such as coherence and nonlinear optics to the x-ray community and the importance of x-ray optics to the laser-generation of ultrashort pulses of x-rays.