Author: A. M. Yaglom
Publisher: Courier Corporation
ISBN: 9780486495712
Category : Mathematics
Languages : en
Pages : 258
Book Description
This two-part treatment covers the general theory of stationary random functions and the Wiener-Kolmogorov theory of extrapolation and interpolation of random sequences and processes. Beginning with the simplest concepts, it covers the correlation function, the ergodic theorem, homogenous random fields, and general rational spectral densities, among other topics. Numerous examples appear throughout the text, with emphasis on the physical meaning of mathematical concepts. Although rigorous in its treatment, this is essentially an introduction, and the sole prerequisites are a rudimentary knowledge of probability and complex variable theory. 1962 edition.
An Introduction to the Theory of Stationary Random Functions
Author: A. M. Yaglom
Publisher: Courier Corporation
ISBN: 9780486495712
Category : Mathematics
Languages : en
Pages : 258
Book Description
This two-part treatment covers the general theory of stationary random functions and the Wiener-Kolmogorov theory of extrapolation and interpolation of random sequences and processes. Beginning with the simplest concepts, it covers the correlation function, the ergodic theorem, homogenous random fields, and general rational spectral densities, among other topics. Numerous examples appear throughout the text, with emphasis on the physical meaning of mathematical concepts. Although rigorous in its treatment, this is essentially an introduction, and the sole prerequisites are a rudimentary knowledge of probability and complex variable theory. 1962 edition.
Publisher: Courier Corporation
ISBN: 9780486495712
Category : Mathematics
Languages : en
Pages : 258
Book Description
This two-part treatment covers the general theory of stationary random functions and the Wiener-Kolmogorov theory of extrapolation and interpolation of random sequences and processes. Beginning with the simplest concepts, it covers the correlation function, the ergodic theorem, homogenous random fields, and general rational spectral densities, among other topics. Numerous examples appear throughout the text, with emphasis on the physical meaning of mathematical concepts. Although rigorous in its treatment, this is essentially an introduction, and the sole prerequisites are a rudimentary knowledge of probability and complex variable theory. 1962 edition.
An Introduction to the Theory of Stationary Random Functions
Author: Akiva M. Jaglom
Publisher:
ISBN:
Category : Time-series analysis
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Time-series analysis
Languages : en
Pages : 0
Book Description
Correlation Theory of Stationary and Related Random Functions
Author: A. M. Yaglom
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 552
Book Description
The theory of random functions is a very important and advanced part of modem probability theory, which is very interesting from the mathematical point of view and has many practical applications. In applications, one has to deal particularly often with the special case of stationary random functions. Such functions naturally arise when one considers a series of observations x(t) which depend on the real-valued or integer-valued ar gument t ("time") and do not undergo any systematic changes, but only fluctuate in a disordered manner about some constant mean level. Such a time series x(t) must naturally be described statistically, and in that case the stationary random function is the most appropriate statistical model. Stationary time series constantly occur in nearly all the areas of modem technology (in particular, in electrical and radio engineering, electronics, and automatic control) as well as in all the physical and geophysical sciences, in many other ap mechanics, economics, biology and medicine, and also plied fields. One of the important trends in the recent development of science and engineering is the ever-increasing role of the fluctuation phenomena associated with the stationary disordered time series. Moreover, at present, more general classes of random functions related to a class of stationary random functions have also been appearing quite often in various applied studies and hence have acquired great practical importance.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 552
Book Description
The theory of random functions is a very important and advanced part of modem probability theory, which is very interesting from the mathematical point of view and has many practical applications. In applications, one has to deal particularly often with the special case of stationary random functions. Such functions naturally arise when one considers a series of observations x(t) which depend on the real-valued or integer-valued ar gument t ("time") and do not undergo any systematic changes, but only fluctuate in a disordered manner about some constant mean level. Such a time series x(t) must naturally be described statistically, and in that case the stationary random function is the most appropriate statistical model. Stationary time series constantly occur in nearly all the areas of modem technology (in particular, in electrical and radio engineering, electronics, and automatic control) as well as in all the physical and geophysical sciences, in many other ap mechanics, economics, biology and medicine, and also plied fields. One of the important trends in the recent development of science and engineering is the ever-increasing role of the fluctuation phenomena associated with the stationary disordered time series. Moreover, at present, more general classes of random functions related to a class of stationary random functions have also been appearing quite often in various applied studies and hence have acquired great practical importance.
Stationary Stochastic Processes
Author: Georg Lindgren
Publisher: CRC Press
ISBN: 1466557796
Category : Mathematics
Languages : en
Pages : 378
Book Description
Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.
Publisher: CRC Press
ISBN: 1466557796
Category : Mathematics
Languages : en
Pages : 378
Book Description
Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.
An Introduction to the Theory of Point Processes
Author: D.J. Daley
Publisher: Springer Science & Business Media
ISBN: 0387215646
Category : Mathematics
Languages : en
Pages : 487
Book Description
Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.
Publisher: Springer Science & Business Media
ISBN: 0387215646
Category : Mathematics
Languages : en
Pages : 487
Book Description
Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.
Random Functions and Turbulence
Author: Stoĭcho Panchev
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 466
Book Description
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random ...
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 466
Book Description
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random ...
PROBABILITY AND STATISTICS - Volume I
Author: Reinhard Viertl
Publisher: EOLSS Publications
ISBN: 1848260520
Category :
Languages : en
Pages : 410
Book Description
Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs
Publisher: EOLSS Publications
ISBN: 1848260520
Category :
Languages : en
Pages : 410
Book Description
Probability and Statistics theme is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme with contributions from distinguished experts in the field, discusses Probability and Statistics. Probability is a standard mathematical concept to describe stochastic uncertainty. Probability and Statistics can be considered as the two sides of a coin. They consist of methods for modeling uncertainty and measuring real phenomena. Today many important political, health, and economic decisions are based on statistics. This theme is structured in five main topics: Probability and Statistics; Probability Theory; Stochastic Processes and Random Fields; Probabilistic Models and Methods; Foundations of Statistics, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs
Introduction to the Theory of Random Processes
Author: Nikolaĭ Vladimirovich Krylov
Publisher: American Mathematical Soc.
ISBN: 0821829858
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Ito stochastic equations. Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used forspectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows for obtaining arepresentation of trajectories through jump measures. The Ito stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures. Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used toobtain them. With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study. Other works by this author published by the AMS include, Lectures on Elliptic and Parabolic Equations in Holder Spaces and Introduction to the Theoryof Diffusion Processes.
Publisher: American Mathematical Soc.
ISBN: 0821829858
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Ito stochastic equations. Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used forspectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows for obtaining arepresentation of trajectories through jump measures. The Ito stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures. Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used toobtain them. With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study. Other works by this author published by the AMS include, Lectures on Elliptic and Parabolic Equations in Holder Spaces and Introduction to the Theoryof Diffusion Processes.
The Theory of Stochastic Processes
Author: D.R. Cox
Publisher: Routledge
ISBN: 1351408941
Category : Mathematics
Languages : en
Pages : 412
Book Description
This book should be of interest to undergraduate and postgraduate students of probability theory.
Publisher: Routledge
ISBN: 1351408941
Category : Mathematics
Languages : en
Pages : 412
Book Description
This book should be of interest to undergraduate and postgraduate students of probability theory.
The Theory of Stochastic Processes I
Author: Iosif I. Gikhman
Publisher: Springer
ISBN: 3642619436
Category : Mathematics
Languages : en
Pages : 587
Book Description
From the Reviews: "Gihman and Skorohod have done an excellent job of presenting the theory in its present state of rich imperfection." --D.W. Stroock, Bulletin of the American Mathematical Society, 1980
Publisher: Springer
ISBN: 3642619436
Category : Mathematics
Languages : en
Pages : 587
Book Description
From the Reviews: "Gihman and Skorohod have done an excellent job of presenting the theory in its present state of rich imperfection." --D.W. Stroock, Bulletin of the American Mathematical Society, 1980