Author: Peter M. Shearer
Publisher: Cambridge University Press
ISBN: 1139478753
Category : Science
Languages : en
Pages : 397
Book Description
This book provides an approachable and concise introduction to seismic theory, designed as a first course for undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations. Incorporating over 30% new material, this second edition includes all the topics needed for a one-semester course in seismology. Additional material has been added throughout including numerical methods, 3-D ray tracing, earthquake location, attenuation, normal modes, and receiver functions. The chapter on earthquakes and source theory has been extensively revised and enlarged, and now includes details on non-double-couple sources, earthquake scaling, radiated energy, and finite slip inversions. Each chapter includes worked problems and detailed exercises that give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate the Earth's seismic properties. Computer subroutines and datasets for use in the exercises are available at www.cambridge.org/shearer.
Introduction to Seismology
Author: Peter M. Shearer
Publisher: Cambridge University Press
ISBN: 1139478753
Category : Science
Languages : en
Pages : 397
Book Description
This book provides an approachable and concise introduction to seismic theory, designed as a first course for undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations. Incorporating over 30% new material, this second edition includes all the topics needed for a one-semester course in seismology. Additional material has been added throughout including numerical methods, 3-D ray tracing, earthquake location, attenuation, normal modes, and receiver functions. The chapter on earthquakes and source theory has been extensively revised and enlarged, and now includes details on non-double-couple sources, earthquake scaling, radiated energy, and finite slip inversions. Each chapter includes worked problems and detailed exercises that give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate the Earth's seismic properties. Computer subroutines and datasets for use in the exercises are available at www.cambridge.org/shearer.
Publisher: Cambridge University Press
ISBN: 1139478753
Category : Science
Languages : en
Pages : 397
Book Description
This book provides an approachable and concise introduction to seismic theory, designed as a first course for undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations. Incorporating over 30% new material, this second edition includes all the topics needed for a one-semester course in seismology. Additional material has been added throughout including numerical methods, 3-D ray tracing, earthquake location, attenuation, normal modes, and receiver functions. The chapter on earthquakes and source theory has been extensively revised and enlarged, and now includes details on non-double-couple sources, earthquake scaling, radiated energy, and finite slip inversions. Each chapter includes worked problems and detailed exercises that give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate the Earth's seismic properties. Computer subroutines and datasets for use in the exercises are available at www.cambridge.org/shearer.
An Introduction to the Theory of Seismology
Author: K. E. Bullen
Publisher:
ISBN: 9780521296861
Category : Science
Languages : en
Pages : 381
Book Description
This radical revision of Professor Bullen's acclaimed and widely used text provides an introduction to modern seismological theory, with emphasis on both the physical models and the mathematical descriptions of earthquakes and their sources. The essential core of the earlier editions has been retained, particularly the tensor treatment of elasticity, seismic wave travel-time analysis and density in the Earth, although these parts of the text have been brought up to date and expanded. The new part of the book reflects on how the study of earthquakes, seismic waves and seismic risk has been broadened in the past two decades. Thus, this edition includes introductory theory of earthquake sources, seismic wave travel through complex geological zones and viscous and anisotropic media, vibrations of the whole Earth, strong-motion seismology and earthquake prediction and risk. There is an emphasis on statistical and numerical procedures and problems of resolution in inverse theory. Modern class exercises are to be found throughout. The book assumes some background in classical physics and mathematics, including simple differential equations, linear algebra and probability theory. It will be suitable for use in undergraduate courses in geophysics, applied mechanics and geotechnology and for graduate courses in seismology and earthquake engineering. In addition, it will serve as a reference text on seismological problems for professionals concerned with earthquakes, Earth structure and wave motion.
Publisher:
ISBN: 9780521296861
Category : Science
Languages : en
Pages : 381
Book Description
This radical revision of Professor Bullen's acclaimed and widely used text provides an introduction to modern seismological theory, with emphasis on both the physical models and the mathematical descriptions of earthquakes and their sources. The essential core of the earlier editions has been retained, particularly the tensor treatment of elasticity, seismic wave travel-time analysis and density in the Earth, although these parts of the text have been brought up to date and expanded. The new part of the book reflects on how the study of earthquakes, seismic waves and seismic risk has been broadened in the past two decades. Thus, this edition includes introductory theory of earthquake sources, seismic wave travel through complex geological zones and viscous and anisotropic media, vibrations of the whole Earth, strong-motion seismology and earthquake prediction and risk. There is an emphasis on statistical and numerical procedures and problems of resolution in inverse theory. Modern class exercises are to be found throughout. The book assumes some background in classical physics and mathematics, including simple differential equations, linear algebra and probability theory. It will be suitable for use in undergraduate courses in geophysics, applied mechanics and geotechnology and for graduate courses in seismology and earthquake engineering. In addition, it will serve as a reference text on seismological problems for professionals concerned with earthquakes, Earth structure and wave motion.
An Introduction to Seismology, Earthquakes, and Earth Structure
Author: Seth Stein
Publisher: John Wiley & Sons
ISBN: 144431131X
Category : Science
Languages : en
Pages : 512
Book Description
An Introduction to Seismology, Earthquakes and Earth Structures is an introduction to seismology and its role in the earth sciences, and is written for advanced undergraduate and beginning graduate students. The fundamentals of seismic wave propagation are developed using a physical approach and then applied to show how refraction, reflection, and teleseismic techniques are used to study the structure and thus the composition and evolution of the earth. The book shows how seismic waves are used to study earthquakes and are integrated with other data to investigate the plate tectonic processes that cause earthquakes. Figures, examples, problems, and computer exercises teach students about seismology in a creative and intuitive manner. Necessary mathematical tools including vector and tensor analysis, matrix algebra, Fourier analysis, statistics of errors, signal processing, and data inversion are introduced with many relevant examples. The text also addresses the fundamentals of seismometry and applications of seismology to societal issues. Special attention is paid to help students visualize connections between different topics and view seismology as an integrated science. An Introduction to Seismology, Earthquakes, and Earth Structure gives an excellent overview for students of geophysics and tectonics, and provides a strong foundation for further studies in seismology. Multidisciplinary examples throughout the text - catering to students in varied disciplines (geology, mineralogy, petrology, physics, etc.). Most up to date book on the market - includes recent seismic events such as the 1999 Earthquakes in Turkey, Greece, and Taiwan). Chapter outlines - each chapter begins with an outline and a list of learning objectives to help students focus and study. Essential math review - an entire section reviews the essential math needed to understand seismology. This can be covered in class or left to students to review as needed. End of chapter problem sets - homework problems that cover the material presented in the chapter. Solutions to all odd numbered problem sets are listed in the back so that students can track their progress. Extensive References - classic references and more current references are listed at the end of each chapter. A set of instructor's resources containing downloadable versions of all the figures in the book, errata and answers to homework problems is available at: http://levee.wustl.edu/seismology/book/. Also available on this website are PowerPoint lecture slides corresponding to the first 5 chapters of the book.
Publisher: John Wiley & Sons
ISBN: 144431131X
Category : Science
Languages : en
Pages : 512
Book Description
An Introduction to Seismology, Earthquakes and Earth Structures is an introduction to seismology and its role in the earth sciences, and is written for advanced undergraduate and beginning graduate students. The fundamentals of seismic wave propagation are developed using a physical approach and then applied to show how refraction, reflection, and teleseismic techniques are used to study the structure and thus the composition and evolution of the earth. The book shows how seismic waves are used to study earthquakes and are integrated with other data to investigate the plate tectonic processes that cause earthquakes. Figures, examples, problems, and computer exercises teach students about seismology in a creative and intuitive manner. Necessary mathematical tools including vector and tensor analysis, matrix algebra, Fourier analysis, statistics of errors, signal processing, and data inversion are introduced with many relevant examples. The text also addresses the fundamentals of seismometry and applications of seismology to societal issues. Special attention is paid to help students visualize connections between different topics and view seismology as an integrated science. An Introduction to Seismology, Earthquakes, and Earth Structure gives an excellent overview for students of geophysics and tectonics, and provides a strong foundation for further studies in seismology. Multidisciplinary examples throughout the text - catering to students in varied disciplines (geology, mineralogy, petrology, physics, etc.). Most up to date book on the market - includes recent seismic events such as the 1999 Earthquakes in Turkey, Greece, and Taiwan). Chapter outlines - each chapter begins with an outline and a list of learning objectives to help students focus and study. Essential math review - an entire section reviews the essential math needed to understand seismology. This can be covered in class or left to students to review as needed. End of chapter problem sets - homework problems that cover the material presented in the chapter. Solutions to all odd numbered problem sets are listed in the back so that students can track their progress. Extensive References - classic references and more current references are listed at the end of each chapter. A set of instructor's resources containing downloadable versions of all the figures in the book, errata and answers to homework problems is available at: http://levee.wustl.edu/seismology/book/. Also available on this website are PowerPoint lecture slides corresponding to the first 5 chapters of the book.
An Introduction to the Theory of Seismology
Author: Keith Edward Bullen
Publisher: Cambridge University Press
ISBN: 9780521283892
Category : Science
Languages : en
Pages : 524
Book Description
This radical revision of Professor Bullen's acclaimed and widely used text provides an introduction to modern seismological theory, with emphasis on both the physical models and the mathematical descriptions of earthquakes and their sources. The essential core of the earlier editions has been retained, particularly the tensor treatment of elasticity, seismic wave travel-time analysis and density in the Earth, although these parts of the text have been brought up to date and expanded. The new part of the book reflects on how the study of earthquakes, seismic waves and seismic risk has been broadened in the past two decades. Thus, this edition includes introductory theory of earthquake sources, seismic wave travel through complex geological zones and viscous and anisotropic media, vibrations of the whole Earth, strong-motion seismology and earthquake prediction and risk. There is an emphasis on statistical and numerical procedures and problems of resolution in inverse theory. Modern class exercises are to be found throughout. The book assumes some background in classical physics and mathematics, including simple differential equations, linear algebra and probability theory. It will be suitable for use in undergraduate courses in geophysics, applied mechanics and geotechnology and for graduate courses in seismology and earthquake engineering. In addition, it will serve as a reference text on seismological problems for professionals concerned with earthquakes, Earth structure and wave motion.
Publisher: Cambridge University Press
ISBN: 9780521283892
Category : Science
Languages : en
Pages : 524
Book Description
This radical revision of Professor Bullen's acclaimed and widely used text provides an introduction to modern seismological theory, with emphasis on both the physical models and the mathematical descriptions of earthquakes and their sources. The essential core of the earlier editions has been retained, particularly the tensor treatment of elasticity, seismic wave travel-time analysis and density in the Earth, although these parts of the text have been brought up to date and expanded. The new part of the book reflects on how the study of earthquakes, seismic waves and seismic risk has been broadened in the past two decades. Thus, this edition includes introductory theory of earthquake sources, seismic wave travel through complex geological zones and viscous and anisotropic media, vibrations of the whole Earth, strong-motion seismology and earthquake prediction and risk. There is an emphasis on statistical and numerical procedures and problems of resolution in inverse theory. Modern class exercises are to be found throughout. The book assumes some background in classical physics and mathematics, including simple differential equations, linear algebra and probability theory. It will be suitable for use in undergraduate courses in geophysics, applied mechanics and geotechnology and for graduate courses in seismology and earthquake engineering. In addition, it will serve as a reference text on seismological problems for professionals concerned with earthquakes, Earth structure and wave motion.
Theoretical Global Seismology
Author: F. A. Dahlen
Publisher: Princeton University Press
ISBN: 0691216150
Category : Science
Languages : en
Pages : 1040
Book Description
After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.
Publisher: Princeton University Press
ISBN: 0691216150
Category : Science
Languages : en
Pages : 1040
Book Description
After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.
Exploration Seismology
Author: R. E. Sheriff
Publisher: Cambridge University Press
ISBN: 1139643118
Category : Science
Languages : en
Pages : 1261
Book Description
This is the completely updated revision of the highly regarded book Exploration Seismology. Available now in one volume, this textbook provides a complete and systematic discussion of exploration seismology. The first part of the book looks at the history of exploration seismology and the theory - developed from the first principles of physics. All aspects of seismic acquisition are then described. The second part of the book goes on to discuss data-processing and interpretation. Applications of seismic exploration to groundwater, environmental and reservoir geophysics are also included. The book is designed to give a comprehensive up-to-date picture of the applications of seismology. Exploration Seismology's comprehensiveness makes it suitable as a text for undergraduate courses for geologists, geophysicists and engineers, as well as a guide and reference work for practising professionals.
Publisher: Cambridge University Press
ISBN: 1139643118
Category : Science
Languages : en
Pages : 1261
Book Description
This is the completely updated revision of the highly regarded book Exploration Seismology. Available now in one volume, this textbook provides a complete and systematic discussion of exploration seismology. The first part of the book looks at the history of exploration seismology and the theory - developed from the first principles of physics. All aspects of seismic acquisition are then described. The second part of the book goes on to discuss data-processing and interpretation. Applications of seismic exploration to groundwater, environmental and reservoir geophysics are also included. The book is designed to give a comprehensive up-to-date picture of the applications of seismology. Exploration Seismology's comprehensiveness makes it suitable as a text for undergraduate courses for geologists, geophysicists and engineers, as well as a guide and reference work for practising professionals.
Applied Seismology
Author: Mamdouh R. Gadallah
Publisher: Pennwell Corporation
ISBN: 9781593700225
Category : Science
Languages : en
Pages : 473
Book Description
This new text provides comprehensive coverage of exploration seismology and elements of geology pertinent to exploration geology. It is profusely illustrated and contains workshops to aid understanding. Several appendices explain the math, equations, and answers of the selected exercise questions.
Publisher: Pennwell Corporation
ISBN: 9781593700225
Category : Science
Languages : en
Pages : 473
Book Description
This new text provides comprehensive coverage of exploration seismology and elements of geology pertinent to exploration geology. It is profusely illustrated and contains workshops to aid understanding. Several appendices explain the math, equations, and answers of the selected exercise questions.
Principles of Seismology
Author: Agustín Udías Vallina
Publisher: Cambridge University Press
ISBN: 1107138698
Category : Nature
Languages : en
Pages : 573
Book Description
This new edition features a completely new chapter on digital seismic data processing, numerous examples and 100 problems.
Publisher: Cambridge University Press
ISBN: 1107138698
Category : Nature
Languages : en
Pages : 573
Book Description
This new edition features a completely new chapter on digital seismic data processing, numerous examples and 100 problems.
Seismology and Plate Tectonics
Author: David Gubbins
Publisher: Cambridge University Press
ISBN: 9780521379953
Category : Science
Languages : en
Pages : 352
Book Description
This introduction to seismological theory and the principles of plate tectonics also develops a practical approach to the interpretation of seismograms for physicists and mathematicians as well as geologists.
Publisher: Cambridge University Press
ISBN: 9780521379953
Category : Science
Languages : en
Pages : 352
Book Description
This introduction to seismological theory and the principles of plate tectonics also develops a practical approach to the interpretation of seismograms for physicists and mathematicians as well as geologists.
Computational Seismology
Author: Heiner Igel
Publisher: Oxford University Press
ISBN: 0198717407
Category : Nature
Languages : en
Pages : 340
Book Description
An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.
Publisher: Oxford University Press
ISBN: 0198717407
Category : Nature
Languages : en
Pages : 340
Book Description
An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.