Author: Naoto Shiraishi
Publisher: Springer Nature
ISBN: 9811981868
Category : Science
Languages : en
Pages : 437
Book Description
This book presents the fundamentals of stochastic thermodynamics, one of the most central subjects in non-equilibrium statistical mechanics. It also explores many recent advances, e.g., in information thermodynamics, the thermodynamic uncertainty relation, and the trade-off relation between efficiency and power. The content is divided into three main parts, the first of which introduces readers to fundamental topics in stochastic thermodynamics, e.g., the basics of stochastic processes, the fluctuation theorem and its variants, information thermodynamics, and large deviation theory. In turn, parts two and three explore advanced topics such as autonomous engines (engines not controlled externally) and finite speed engines, while also explaining the key concepts from recent stochastic thermodynamics theory that are involved. To fully benefit from the book, readers only need an undergraduate-level background in statistical mechanics and quantum mechanics; no background in information theory or stochastic processes is needed. Accordingly, the book offers a valuable resource for early graduate or higher-level readers who are unfamiliar with this subject but want to keep up with the cutting-edge research in this field. In addition, the author’s vivid descriptions interspersed throughout the book will help readers grasp ‘living’ research developments and begin their own research in this field.
An Introduction to Stochastic Thermodynamics
Author: Naoto Shiraishi
Publisher: Springer Nature
ISBN: 9811981868
Category : Science
Languages : en
Pages : 437
Book Description
This book presents the fundamentals of stochastic thermodynamics, one of the most central subjects in non-equilibrium statistical mechanics. It also explores many recent advances, e.g., in information thermodynamics, the thermodynamic uncertainty relation, and the trade-off relation between efficiency and power. The content is divided into three main parts, the first of which introduces readers to fundamental topics in stochastic thermodynamics, e.g., the basics of stochastic processes, the fluctuation theorem and its variants, information thermodynamics, and large deviation theory. In turn, parts two and three explore advanced topics such as autonomous engines (engines not controlled externally) and finite speed engines, while also explaining the key concepts from recent stochastic thermodynamics theory that are involved. To fully benefit from the book, readers only need an undergraduate-level background in statistical mechanics and quantum mechanics; no background in information theory or stochastic processes is needed. Accordingly, the book offers a valuable resource for early graduate or higher-level readers who are unfamiliar with this subject but want to keep up with the cutting-edge research in this field. In addition, the author’s vivid descriptions interspersed throughout the book will help readers grasp ‘living’ research developments and begin their own research in this field.
Publisher: Springer Nature
ISBN: 9811981868
Category : Science
Languages : en
Pages : 437
Book Description
This book presents the fundamentals of stochastic thermodynamics, one of the most central subjects in non-equilibrium statistical mechanics. It also explores many recent advances, e.g., in information thermodynamics, the thermodynamic uncertainty relation, and the trade-off relation between efficiency and power. The content is divided into three main parts, the first of which introduces readers to fundamental topics in stochastic thermodynamics, e.g., the basics of stochastic processes, the fluctuation theorem and its variants, information thermodynamics, and large deviation theory. In turn, parts two and three explore advanced topics such as autonomous engines (engines not controlled externally) and finite speed engines, while also explaining the key concepts from recent stochastic thermodynamics theory that are involved. To fully benefit from the book, readers only need an undergraduate-level background in statistical mechanics and quantum mechanics; no background in information theory or stochastic processes is needed. Accordingly, the book offers a valuable resource for early graduate or higher-level readers who are unfamiliar with this subject but want to keep up with the cutting-edge research in this field. In addition, the author’s vivid descriptions interspersed throughout the book will help readers grasp ‘living’ research developments and begin their own research in this field.
Stochastic Thermodynamics
Author: Luca Peliti
Publisher: Princeton University Press
ISBN: 0691201773
Category : Mathematics
Languages : en
Pages : 272
Book Description
The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course
Publisher: Princeton University Press
ISBN: 0691201773
Category : Mathematics
Languages : en
Pages : 272
Book Description
The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course
Statistical Thermodynamics and Stochastic Kinetics
Author: Yiannis N. Kaznessis
Publisher: Cambridge University Press
ISBN: 0521765617
Category : Mathematics
Languages : en
Pages : 329
Book Description
Provides engineers with the knowledge they need to apply thermodynamics and solve engineering challenges at the molecular level.
Publisher: Cambridge University Press
ISBN: 0521765617
Category : Mathematics
Languages : en
Pages : 329
Book Description
Provides engineers with the knowledge they need to apply thermodynamics and solve engineering challenges at the molecular level.
Quantum Stochastic Thermodynamics
Author: Philipp Strasberg
Publisher: Oxford University Press
ISBN: 0192895583
Category : Science
Languages : en
Pages : 337
Book Description
The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.
Publisher: Oxford University Press
ISBN: 0192895583
Category : Science
Languages : en
Pages : 337
Book Description
The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.
An Introduction to Statistical Mechanics and Thermodynamics
Author: Robert H. Swendsen
Publisher: OUP Oxford
ISBN: 0191627461
Category : Science
Languages : en
Pages : 497
Book Description
This text presents the two complementary aspects of thermal physics as an integrated theory of the properties of matter. Conceptual understanding is promoted by thorough development of basic concepts. In contrast to many texts, statistical mechanics, including discussion of the required probability theory, is presented first. This provides a statistical foundation for the concept of entropy, which is central to thermal physics. A unique feature of the book is the development of entropy based on Boltzmann's 1877 definition; this avoids contradictions or ad hoc corrections found in other texts. Detailed fundamentals provide a natural grounding for advanced topics, such as black-body radiation and quantum gases. An extensive set of problems (solutions are available for lecturers through the OUP website), many including explicit computations, advance the core content by probing essential concepts. The text is designed for a two-semester undergraduate course but can be adapted for one-semester courses emphasizing either aspect of thermal physics. It is also suitable for graduate study.
Publisher: OUP Oxford
ISBN: 0191627461
Category : Science
Languages : en
Pages : 497
Book Description
This text presents the two complementary aspects of thermal physics as an integrated theory of the properties of matter. Conceptual understanding is promoted by thorough development of basic concepts. In contrast to many texts, statistical mechanics, including discussion of the required probability theory, is presented first. This provides a statistical foundation for the concept of entropy, which is central to thermal physics. A unique feature of the book is the development of entropy based on Boltzmann's 1877 definition; this avoids contradictions or ad hoc corrections found in other texts. Detailed fundamentals provide a natural grounding for advanced topics, such as black-body radiation and quantum gases. An extensive set of problems (solutions are available for lecturers through the OUP website), many including explicit computations, advance the core content by probing essential concepts. The text is designed for a two-semester undergraduate course but can be adapted for one-semester courses emphasizing either aspect of thermal physics. It is also suitable for graduate study.
Statistical Thermodynamics And Stochastic Theory Of Nonequilibrium Systems
Author: Werner Ebeling
Publisher: World Scientific Publishing Company
ISBN: 9813104635
Category : Science
Languages : en
Pages : 342
Book Description
This book presents both the fundamentals and the major research topics in statistical physics of systems out of equilibrium. It summarizes different approaches to describe such systems on the thermodynamic and stochastic levels, and discusses a variety of areas including reactions, anomalous kinetics, and the behavior of self-propelling particles.
Publisher: World Scientific Publishing Company
ISBN: 9813104635
Category : Science
Languages : en
Pages : 342
Book Description
This book presents both the fundamentals and the major research topics in statistical physics of systems out of equilibrium. It summarizes different approaches to describe such systems on the thermodynamic and stochastic levels, and discusses a variety of areas including reactions, anomalous kinetics, and the behavior of self-propelling particles.
Statistical Mechanics for Athermal Fluctuation
Author: Kiyoshi Kanazawa
Publisher: Springer
ISBN: 981106332X
Category : Science
Languages : en
Pages : 231
Book Description
The author investigates athermal fluctuation from the viewpoints of statistical mechanics in this thesis. Stochastic methods are theoretically very powerful in describing fluctuation of thermodynamic quantities in small systems on the level of a single trajectory and have been recently developed on the basis of stochastic thermodynamics. This thesis proposes, for the first time, a systematic framework to describe athermal fluctuation, developing stochastic thermodynamics for non-Gaussian processes, while thermal fluctuations are mainly addressed from the viewpoint of Gaussian stochastic processes in most of the conventional studies. First, the book provides an elementary introduction to the stochastic processes and stochastic thermodynamics. The author derives a Langevin-like equation with non-Gaussian noise as a minimal stochastic model for athermal systems, and its analytical solution by developing systematic expansions is shown as the main result. Furthermore, the a uthor shows a thermodynamic framework for such non-Gaussian fluctuations, and studies some thermodynamics phenomena, i.e. heat conduction and energy pumping, which shows distinct characteristics from conventional thermodynamics. The theory introduced in the book would be a systematic foundation to describe dynamics of athermal fluctuation quantitatively and to analyze their thermodynamic properties on the basis of stochastic methods.
Publisher: Springer
ISBN: 981106332X
Category : Science
Languages : en
Pages : 231
Book Description
The author investigates athermal fluctuation from the viewpoints of statistical mechanics in this thesis. Stochastic methods are theoretically very powerful in describing fluctuation of thermodynamic quantities in small systems on the level of a single trajectory and have been recently developed on the basis of stochastic thermodynamics. This thesis proposes, for the first time, a systematic framework to describe athermal fluctuation, developing stochastic thermodynamics for non-Gaussian processes, while thermal fluctuations are mainly addressed from the viewpoint of Gaussian stochastic processes in most of the conventional studies. First, the book provides an elementary introduction to the stochastic processes and stochastic thermodynamics. The author derives a Langevin-like equation with non-Gaussian noise as a minimal stochastic model for athermal systems, and its analytical solution by developing systematic expansions is shown as the main result. Furthermore, the a uthor shows a thermodynamic framework for such non-Gaussian fluctuations, and studies some thermodynamics phenomena, i.e. heat conduction and energy pumping, which shows distinct characteristics from conventional thermodynamics. The theory introduced in the book would be a systematic foundation to describe dynamics of athermal fluctuation quantitatively and to analyze their thermodynamic properties on the basis of stochastic methods.
Statistical Mechanics, Kinetic theory, and Stochastic Processes
Author: C.V. Heer
Publisher: Elsevier
ISBN: 0323144411
Category : Science
Languages : en
Pages : 619
Book Description
Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of space and velocity distributions. The discussion then turns to radiation and its interaction with an atom; probability, statistics, and conditional probability; intermolecular interactions; transport phenomena; and statistical thermodynamics. Molecular systems at low densities are also considered, together with non-ideal and real gases; liquids and solids; and stochastic processes, noise, and fluctuations. In particular, the response of atoms and molecules to perturbations and scattering by crystals, liquids, and high-pressure gases are examined. This monograph will be useful for undergraduate students, practitioners, and researchers in physics.
Publisher: Elsevier
ISBN: 0323144411
Category : Science
Languages : en
Pages : 619
Book Description
Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of space and velocity distributions. The discussion then turns to radiation and its interaction with an atom; probability, statistics, and conditional probability; intermolecular interactions; transport phenomena; and statistical thermodynamics. Molecular systems at low densities are also considered, together with non-ideal and real gases; liquids and solids; and stochastic processes, noise, and fluctuations. In particular, the response of atoms and molecules to perturbations and scattering by crystals, liquids, and high-pressure gases are examined. This monograph will be useful for undergraduate students, practitioners, and researchers in physics.
Statistical Dynamics
Author: R. F. Streater
Publisher: Imperial College Press
ISBN: 1848162448
Category : Science
Languages : en
Pages : 393
Book Description
How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time? This book answers the question for classical probability (Part I) and quantum probability (Part II). A novel feature is the introduction of heat particles which supply thermal noise and represent the kinetic energy of the molecules. When applied to chemical reactions, the theory leads to the usual nonlinear reaction-diffusion equations as well as modifications of them. These can exhibit oscillations, or can converge to equilibrium.In this second edition, the text is simplified in parts and the bibliography has been expanded. The main difference is the addition of two new chapters; in the first, classical fluid dynamics is introduced. A lattice model is developed, which in the continuum limit gives us the Euler equations. The five Navier-Stokes equations are also presented, modified by a diffusion term in the continuity equation. The second addition is in the last chapter, which now includes estimation theory, both classical and quantum, using information geometry.
Publisher: Imperial College Press
ISBN: 1848162448
Category : Science
Languages : en
Pages : 393
Book Description
How can one construct dynamical systems obeying the first and second laws of thermodynamics: mean energy is conserved and entropy increases with time? This book answers the question for classical probability (Part I) and quantum probability (Part II). A novel feature is the introduction of heat particles which supply thermal noise and represent the kinetic energy of the molecules. When applied to chemical reactions, the theory leads to the usual nonlinear reaction-diffusion equations as well as modifications of them. These can exhibit oscillations, or can converge to equilibrium.In this second edition, the text is simplified in parts and the bibliography has been expanded. The main difference is the addition of two new chapters; in the first, classical fluid dynamics is introduced. A lattice model is developed, which in the continuum limit gives us the Euler equations. The five Navier-Stokes equations are also presented, modified by a diffusion term in the continuity equation. The second addition is in the last chapter, which now includes estimation theory, both classical and quantum, using information geometry.
Non-Equilibrium Thermodynamics
Author: S. R. De Groot
Publisher: Courier Corporation
ISBN: 0486153509
Category : Science
Languages : en
Pages : 532
Book Description
Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more.
Publisher: Courier Corporation
ISBN: 0486153509
Category : Science
Languages : en
Pages : 532
Book Description
Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more.