An Introduction to Stochastic Orders

An Introduction to Stochastic Orders PDF Author: Felix Belzunce
Publisher: Academic Press
ISBN: 0128038268
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
An Introduction to Stochastic Orders discusses this powerful tool that can be used in comparing probabilistic models in different areas such as reliability, survival analysis, risks, finance, and economics. The book provides a general background on this topic for students and researchers who want to use it as a tool for their research. In addition, users will find detailed proofs of the main results and applications to several probabilistic models of interest in several fields, and discussions of fundamental properties of several stochastic orders, in the univariate and multivariate cases, along with applications to probabilistic models. - Introduces stochastic orders and its notation - Discusses different orders of univariate stochastic orders - Explains multivariate stochastic orders and their convex, likelihood ratio, and dispersive orders

An Introduction to Stochastic Orders

An Introduction to Stochastic Orders PDF Author: Felix Belzunce
Publisher: Academic Press
ISBN: 0128038268
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
An Introduction to Stochastic Orders discusses this powerful tool that can be used in comparing probabilistic models in different areas such as reliability, survival analysis, risks, finance, and economics. The book provides a general background on this topic for students and researchers who want to use it as a tool for their research. In addition, users will find detailed proofs of the main results and applications to several probabilistic models of interest in several fields, and discussions of fundamental properties of several stochastic orders, in the univariate and multivariate cases, along with applications to probabilistic models. - Introduces stochastic orders and its notation - Discusses different orders of univariate stochastic orders - Explains multivariate stochastic orders and their convex, likelihood ratio, and dispersive orders

Introduction to Stochastic Processes

Introduction to Stochastic Processes PDF Author: Erhan Cinlar
Publisher: Courier Corporation
ISBN: 0486276325
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

Introduction to Stochastic Models

Introduction to Stochastic Models PDF Author: Roe Goodman
Publisher: Courier Corporation
ISBN: 0486450376
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
Newly revised by the author, this undergraduate-level text introduces the mathematical theory of probability and stochastic processes. Using both computer simulations and mathematical models of random events, it comprises numerous applications to the physical and biological sciences, engineering, and computer science. Subjects include sample spaces, probabilities distributions and expectations of random variables, conditional expectations, Markov chains, and the Poisson process. Additional topics encompass continuous-time stochastic processes, birth and death processes, steady-state probabilities, general queuing systems, and renewal processes. Each section features worked examples, and exercises appear at the end of each chapter, with numerical solutions at the back of the book. Suggestions for further reading in stochastic processes, simulation, and various applications also appear at the end.

Introduction to Stochastic Processes with R

Introduction to Stochastic Processes with R PDF Author: Robert P. Dobrow
Publisher: John Wiley & Sons
ISBN: 1118740653
Category : Mathematics
Languages : en
Pages : 504

Get Book Here

Book Description
An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Stochastic Orders and Their Applications

Stochastic Orders and Their Applications PDF Author: Moshe Shaked
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
Stochastic orders and inequalities are being used at an accelerated rate in many diverse areas of probability and statistics. This book provides the first unified, systematic, and accessible treatment of stochasticorders, addressing the growing importance of these orders with the presentation of numerous results that illustrate their usefulness and applicability. Ten insightful chapters emphasize the applications by specialists in probability and statistics, economics, operations research, and reliability theory. Applications include multivariate variability, epidemics, comparisons of risk and risk aversion, scheduling, and systems reliability theory.

Introduction to Stochastic Processes

Introduction to Stochastic Processes PDF Author: Gregory F. Lawler
Publisher: CRC Press
ISBN: 1482286114
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.

Stochastic Differential Equations

Stochastic Differential Equations PDF Author: Bernt Oksendal
Publisher: Springer Science & Business Media
ISBN: 3662130505
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.

Introduction to Stochastic Integration

Introduction to Stochastic Integration PDF Author: K.L. Chung
Publisher: Springer Science & Business Media
ISBN: 1461495873
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability. Using the modern approach, the stochastic integral is defined for predictable integrands and local martingales; then It’s change of variable formula is developed for continuous martingales. Applications include a characterization of Brownian motion, Hermite polynomials of martingales, the Feynman–Kac functional and the Schrödinger equation. For Brownian motion, the topics of local time, reflected Brownian motion, and time change are discussed. New to the second edition are a discussion of the Cameron–Martin–Girsanov transformation and a final chapter which provides an introduction to stochastic differential equations, as well as many exercises for classroom use. This book will be a valuable resource to all mathematicians, statisticians, economists, and engineers employing the modern tools of stochastic analysis. The text also proves that stochastic integration has made an important impact on mathematical progress over the last decades and that stochastic calculus has become one of the most powerful tools in modern probability theory. —Journal of the American Statistical Association An attractive text...written in [a] lean and precise style...eminently readable. Especially pleasant are the care and attention devoted to details... A very fine book. —Mathematical Reviews

An Introduction to Stochastic Processes in Physics

An Introduction to Stochastic Processes in Physics PDF Author: Don S. Lemons
Publisher: Johns Hopkins University Press+ORM
ISBN: 0801876389
Category : Science
Languages : en
Pages : 165

Get Book Here

Book Description
This “lucid, masterfully written introduction to an often difficult subject . . . belongs on the bookshelf of every student of statistical physics” (Dr. Brian J. Albright, Applied Physics Division, Los Alamos National Laboratory). This book provides an accessible introduction to stochastic processes in physics and describes the basic mathematical tools of the trade: probability, random walks, and Wiener and Ornstein-Uhlenbeck processes. With an emphasis on applications, it includes end-of-chapter problems. Physicist and author Don S. Lemons builds on Paul Langevin’s seminal 1908 paper “On the Theory of Brownian Motion” and its explanations of classical uncertainty in natural phenomena. Following Langevin’s example, Lemons applies Newton’s second law to a “Brownian particle on which the total force included a random component.” This method builds on Newtonian dynamics and provides an accessible explanation to anyone approaching the subject for the first time. This volume contains the complete text of Paul Langevin’s “On the Theory of Brownian Motion,” translated by Anthony Gythiel.