An Introduction to Spinors and Geometry with Applications in Physics,

An Introduction to Spinors and Geometry with Applications in Physics, PDF Author: Ian M. Benn
Publisher: CRC Press
ISBN: 9780852742617
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
There is now a greater range of mathematics used in theoretical physics than ever. The aim of this book is to introduce theoretical physicists, of graduate student level upwards, to the methods of differential geometry and Clifford algebras in classical field theory. Recent developments in particle physics have elevated the notion of spinor fields to considerable prominence, so that many new ideas require considerable knowledge of their properties and expertise in their manipulation. It is also widely appreciated now that differential geometry has an important role to play in unification schemes which include gravity. All the important prerequisite results of group theory, linear algebra, real and complex vector spaces are discussed. Spinors are approached from the viewpoint of Clifford algebras. This gives a systematic way of studying their properties in all dimensions and signatures. Importance is also placed on making contact with the traditional component oriented approach. The basic ideas of differential geometry are introduced emphasising tensor, rather than component, methods. Spinor fields are introduced naturally in the context of Clifford bundles. Spinor field equations on manifolds are introduced together with the global implications their solutions have on the underlying geometry. Many mathematical concepts are illustrated using field theoretical descriptions of the Maxwell, Dirac and Rarita-Schwinger equations, their symmetries and couplings to Einsteinian gravity. The core of the book contains material which is applicable to physics. After a discussion of the Newtonian dynamics of particles, the importance of Lorentzian geometry is motivated by Maxwell's theory of electromagnetism. A description of gravitation is motivated by Maxwell's theory of electromagnetism. A description of gravitation in terms of the curvature of a pseudo-Riemannian spacetime is used to incorporate gravitational interactions into the language of classical field theory. This book will be of great interest to postgraduate students in theoretical physics, and to mathematicians interested in applications of differential geometry in physics.

An Introduction to Spinors and Geometry with Applications in Physics,

An Introduction to Spinors and Geometry with Applications in Physics, PDF Author: Ian M. Benn
Publisher: CRC Press
ISBN: 9780852742617
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
There is now a greater range of mathematics used in theoretical physics than ever. The aim of this book is to introduce theoretical physicists, of graduate student level upwards, to the methods of differential geometry and Clifford algebras in classical field theory. Recent developments in particle physics have elevated the notion of spinor fields to considerable prominence, so that many new ideas require considerable knowledge of their properties and expertise in their manipulation. It is also widely appreciated now that differential geometry has an important role to play in unification schemes which include gravity. All the important prerequisite results of group theory, linear algebra, real and complex vector spaces are discussed. Spinors are approached from the viewpoint of Clifford algebras. This gives a systematic way of studying their properties in all dimensions and signatures. Importance is also placed on making contact with the traditional component oriented approach. The basic ideas of differential geometry are introduced emphasising tensor, rather than component, methods. Spinor fields are introduced naturally in the context of Clifford bundles. Spinor field equations on manifolds are introduced together with the global implications their solutions have on the underlying geometry. Many mathematical concepts are illustrated using field theoretical descriptions of the Maxwell, Dirac and Rarita-Schwinger equations, their symmetries and couplings to Einsteinian gravity. The core of the book contains material which is applicable to physics. After a discussion of the Newtonian dynamics of particles, the importance of Lorentzian geometry is motivated by Maxwell's theory of electromagnetism. A description of gravitation is motivated by Maxwell's theory of electromagnetism. A description of gravitation in terms of the curvature of a pseudo-Riemannian spacetime is used to incorporate gravitational interactions into the language of classical field theory. This book will be of great interest to postgraduate students in theoretical physics, and to mathematicians interested in applications of differential geometry in physics.

An Introduction to Spinors and Geometry with Applications in Physics

An Introduction to Spinors and Geometry with Applications in Physics PDF Author: Ian M. Benn
Publisher: Institute of Physics Publishing (GB)
ISBN:
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
"...The aim of this book is to introduce theoretical physicists, of graduate student level upwards, to the methods of differential geometry and Clifford algebras in classical field theory..."--back cover.

An Introduction to Clifford Algebras and Spinors

An Introduction to Clifford Algebras and Spinors PDF Author: Jayme Vaz Jr.
Publisher: Oxford University Press
ISBN: 0198782926
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.

Geometry, Spinors and Applications

Geometry, Spinors and Applications PDF Author: Donal J. Hurley
Publisher: Springer
ISBN: 1852332239
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
This text is a self-contained, comprehensive treatment of the tensor and spinor calculus of space-time manifolds with as few technicalities as correct treatment allows. Both the physical and geometrical motivation of all concepts are discussed, helping the reader to go through the technical details in a confident manner. Several physical theories are discussed and developed beyond standard treatment using results in the book. Both the traditional "index" and modern "coordinate-free" notations are used side-by-side in the book, making it accessible to beginner graduate students in mathematics and physics. The methods developed offer new insights into standard areas of physics, such as classical mechanics or electromagnetism, and takes readers to the frontiers of knowledge of spinor calculus.

The Theory of Spinors

The Theory of Spinors PDF Author: Élie Cartan
Publisher: Courier Corporation
ISBN: 0486137325
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.

Spinors in Physics

Spinors in Physics PDF Author: Jean Hladik
Publisher: Springer Science & Business Media
ISBN: 1461214882
Category : Science
Languages : en
Pages : 228

Get Book Here

Book Description
Invented by Dirac in creating his relativistic quantum theory of the electron, spinors are important in quantum theory, relativity, nuclear physics, atomic and molecular physics, and condensed matter physics. Essentially, they are the mathematical entities that correspond to electrons in the same way that ordinary wave functions correspond to classical particles. Because of their relations to the rotation group SO(n) and the unitary group SU(n), this discussion will be of interest to applied mathematicians as well as physicists.

Clifford Algebras and Spinors

Clifford Algebras and Spinors PDF Author: Pertti Lounesto
Publisher: Cambridge University Press
ISBN: 0521005515
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics PDF Author: D.H. Sattinger
Publisher: Springer Science & Business Media
ISBN: 1475719108
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.

An Introduction to Clifford Algebras and Spinors

An Introduction to Clifford Algebras and Spinors PDF Author: Jayme Vaz Jr.
Publisher: Oxford University Press
ISBN: 0191085782
Category : Science
Languages : en
Pages : 257

Get Book Here

Book Description
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and is accessible to both students and researchers. It emphasizes the formal character and the deep algebraic and geometric completeness, and merges them with the physical applications. The style is clear and precise, but not pedantic. The sole pre-requisites is a course in Linear Algebra which most students of Physics, Mathematics or Engineering will have covered as part of their undergraduate studies.

An Introduction to Symplectic Geometry

An Introduction to Symplectic Geometry PDF Author: Rolf Berndt
Publisher: American Mathematical Society
ISBN: 1470476886
Category : Mathematics
Languages : en
Pages : 213

Get Book Here

Book Description
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.