An Introduction to Seismic Design of Nonstructural Building Components for Professional Engineers

An Introduction to Seismic Design of Nonstructural Building Components for Professional Engineers PDF Author: J. Paul Guyer, P.E., R.A.
Publisher: Guyer Partners
ISBN:
Category : Technology & Engineering
Languages : en
Pages :

Get Book Here

Book Description
Introductory technical guidance for professional engineers interested in seismic design of non-structural components of buildings. Here is what is discussed: 1. GENERAL, 2. ARCHITECTURAL COMPONENTS, 3. MECHANICAL AND ELECTRICAL EQUIPMENT, 4. ACCEPTANCE CRITERIA.

An Introduction to Seismic Design of Nonstructural Building Components for Professional Engineers

An Introduction to Seismic Design of Nonstructural Building Components for Professional Engineers PDF Author: J. Paul Guyer, P.E., R.A.
Publisher: Guyer Partners
ISBN:
Category : Technology & Engineering
Languages : en
Pages :

Get Book Here

Book Description
Introductory technical guidance for professional engineers interested in seismic design of non-structural components of buildings. Here is what is discussed: 1. GENERAL, 2. ARCHITECTURAL COMPONENTS, 3. MECHANICAL AND ELECTRICAL EQUIPMENT, 4. ACCEPTANCE CRITERIA.

An Introduction to Seismic Design of Nonstructural Building Components

An Introduction to Seismic Design of Nonstructural Building Components PDF Author: J. Paul Guyer, P.E., R.A.
Publisher: Guyer Partners
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 47

Get Book Here

Book Description
Introductory technical guidance for professional engineers interested in seismic design of nonstructural building components. Here is what is discussed: 1. GENERAL 2. ARCHITECTURAL COMPONENTS 3. MECHANICAL AND ELECTRICAL EQUIPMENT 4. ACCEPTANCE CRITERIA.

The Seismic Design Handbook

The Seismic Design Handbook PDF Author: Farzad Naeim
Publisher: Springer Science & Business Media
ISBN: 1461516935
Category : Technology & Engineering
Languages : en
Pages : 816

Get Book Here

Book Description
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.

Performance Based Seismic Design for Tall Buildings

Performance Based Seismic Design for Tall Buildings PDF Author: Ramin Golesorkhi
Publisher:
ISBN: 9780939493562
Category : Buildings
Languages : en
Pages : 116

Get Book Here

Book Description
Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.

An Introduction to Seismic Design Nomenclature

An Introduction to Seismic Design Nomenclature PDF Author: J. Paul Guyer, P.E., R.A.
Publisher: Guyer Partners
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 34

Get Book Here

Book Description
Introductory guidance for those interested in seismic design nomenclature.

Fundamental Concepts of Earthquake Engineering

Fundamental Concepts of Earthquake Engineering PDF Author: Roberto Villaverde
Publisher: CRC Press
ISBN: 1439883114
Category : Technology & Engineering
Languages : en
Pages : 976

Get Book Here

Book Description
While successfully preventing earthquakes may still be beyond the capacity of modern engineering, the ability to mitigate damages with strong structural designs and other mitigation measures are well within the purview of science. Fundamental Concepts of Earthquake Engineering presents the concepts, procedures, and code provisions that are currentl

Seismic Loads

Seismic Loads PDF Author: Finley Allan Charney
Publisher:
ISBN: 9780784415504
Category : Earthquake resistant design
Languages : en
Pages : 186

Get Book Here

Book Description
Authors Charney, Heausler, and Marshall provide clear, authoritative explanations of the seismic design provisions contained in Minimum Design Loads and Associated Criteria for Buildings and Other Structures, Standard ASCE/SEI 7-16.

Quantification of Building Seismic Performance Factors

Quantification of Building Seismic Performance Factors PDF Author:
Publisher:
ISBN:
Category : Building laws
Languages : en
Pages : 424

Get Book Here

Book Description
This report describes a recommended methodology for reliably quantifying building system performance and response parameters for use in seismic design. The recommended methodology (referred to herein as the Methodology) provides a rational basis for establishing global seismic performance factors (SPFs), including the response modification coefficient (R factor), the system overstrength factor, and deflection amplification factor (Cd), of new seismic-force-resisting systems proposed for inclusion in model building codes. The purpose of this Methodology is to provide a rational basis for determining building seismic performance factors that, when properly implemented in the seismic design process, will result in equivalent safety against collapse in an earthquake, comparable to the inherent safety against collapse intended by current seismic codes, for buildings with different seismic-force-resisting systems.

Earthquake Engineering

Earthquake Engineering PDF Author: Yousef Bozorgnia
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958

Get Book Here

Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res

Displacement-based Seismic Design of Structures

Displacement-based Seismic Design of Structures PDF Author: M. J. N. Priestley
Publisher: Iuss Press
ISBN:
Category : Science
Languages : en
Pages : 750

Get Book Here

Book Description
Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.