Author: Y. Takahashi
Publisher: Elsevier
ISBN: 148318627X
Category : Science
Languages : en
Pages : 311
Book Description
An Introduction to Field Quantization is an introductory discussion of field quantization and problems closely related to it. Field quantization establishes a commutation relation of the field and finds an operator in such a manner that the Heisenberg equation of motion is satisfied. This book contains eight chapters and begins with a review of the quantization of the Schroedinger field and the close relation between quantized field theory and the many-body theory in quantum mechanics. These topics are followed by discussions of the quantization of the radiation field and the field of lattice vibrations in a solid. The succeeding chapter deals with the familiar linear equations in relativistic field theory and the deduction of certain spin independent theories, which these fields have in common. Other chapter explores the derivation technique of the conservation laws for fields with arbitrary spin directly from the field equations without explicit recourse to Noether's theorem using a configuration space version of the generalized Ward identity. The discussion then shifts to the relativistic quantization method applicable to any field with arbitrary spin; the transformation of various fields under the Lorentz transformation; and a general method for constructing wave functions explicitly, as well as the application of this method to several examples. The concluding chapter focuses on the quantization of interacting fields. This book will prove useful to physicists and researchers.
An Introduction to Field Quantization
Author: Y. Takahashi
Publisher: Elsevier
ISBN: 148318627X
Category : Science
Languages : en
Pages : 311
Book Description
An Introduction to Field Quantization is an introductory discussion of field quantization and problems closely related to it. Field quantization establishes a commutation relation of the field and finds an operator in such a manner that the Heisenberg equation of motion is satisfied. This book contains eight chapters and begins with a review of the quantization of the Schroedinger field and the close relation between quantized field theory and the many-body theory in quantum mechanics. These topics are followed by discussions of the quantization of the radiation field and the field of lattice vibrations in a solid. The succeeding chapter deals with the familiar linear equations in relativistic field theory and the deduction of certain spin independent theories, which these fields have in common. Other chapter explores the derivation technique of the conservation laws for fields with arbitrary spin directly from the field equations without explicit recourse to Noether's theorem using a configuration space version of the generalized Ward identity. The discussion then shifts to the relativistic quantization method applicable to any field with arbitrary spin; the transformation of various fields under the Lorentz transformation; and a general method for constructing wave functions explicitly, as well as the application of this method to several examples. The concluding chapter focuses on the quantization of interacting fields. This book will prove useful to physicists and researchers.
Publisher: Elsevier
ISBN: 148318627X
Category : Science
Languages : en
Pages : 311
Book Description
An Introduction to Field Quantization is an introductory discussion of field quantization and problems closely related to it. Field quantization establishes a commutation relation of the field and finds an operator in such a manner that the Heisenberg equation of motion is satisfied. This book contains eight chapters and begins with a review of the quantization of the Schroedinger field and the close relation between quantized field theory and the many-body theory in quantum mechanics. These topics are followed by discussions of the quantization of the radiation field and the field of lattice vibrations in a solid. The succeeding chapter deals with the familiar linear equations in relativistic field theory and the deduction of certain spin independent theories, which these fields have in common. Other chapter explores the derivation technique of the conservation laws for fields with arbitrary spin directly from the field equations without explicit recourse to Noether's theorem using a configuration space version of the generalized Ward identity. The discussion then shifts to the relativistic quantization method applicable to any field with arbitrary spin; the transformation of various fields under the Lorentz transformation; and a general method for constructing wave functions explicitly, as well as the application of this method to several examples. The concluding chapter focuses on the quantization of interacting fields. This book will prove useful to physicists and researchers.
Field Quantization
Author: Walter Greiner
Publisher: Springer Science & Business Media
ISBN: 364261485X
Category : Science
Languages : en
Pages : 447
Book Description
Theoretical physics has become a many-faceted science. For the young stu dent it is difficult enough to cope with the overwhelming amount of new scientific material that has to be learned, let alone obtain an overview of the entire field, which ranges from mechanics through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion science, statistical mechanics, thermodynamics, and solid-state theory to elementary-particle physics. And this knowledge should be acquired in just 8-10 semesters, during which, in addition, a Diploma or Master's thesis has to be worked on or examinations prepared for. All this can be achieved only if the university teachers help to introduce the student to the new disciplines as early on as possible, in order to create interest and excitement that in turn set free essential new energy. At the Johann Wolfgang Goethe University in Frankfurt we therefore con front the student with theoretical physics immediately, in the first semester. Theoretical Mechanics I and II, Electrodynamics, and Quantum Mechanics I - An Introduction are the basic courses during the first two years. These lectures are supplemented with many mathematical explanations and much support material. After the fourth semester of studies, graduate work begins, and Quantum Mechanics II - Symmetries, Statistical Mechanics and Ther modynamics, Relativistic Quantum Mechanics, Quantum Electrodynamics, the Gauge Theory of Weak Interactions, and Quantum Chromo dynamics are obligatory.
Publisher: Springer Science & Business Media
ISBN: 364261485X
Category : Science
Languages : en
Pages : 447
Book Description
Theoretical physics has become a many-faceted science. For the young stu dent it is difficult enough to cope with the overwhelming amount of new scientific material that has to be learned, let alone obtain an overview of the entire field, which ranges from mechanics through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion science, statistical mechanics, thermodynamics, and solid-state theory to elementary-particle physics. And this knowledge should be acquired in just 8-10 semesters, during which, in addition, a Diploma or Master's thesis has to be worked on or examinations prepared for. All this can be achieved only if the university teachers help to introduce the student to the new disciplines as early on as possible, in order to create interest and excitement that in turn set free essential new energy. At the Johann Wolfgang Goethe University in Frankfurt we therefore con front the student with theoretical physics immediately, in the first semester. Theoretical Mechanics I and II, Electrodynamics, and Quantum Mechanics I - An Introduction are the basic courses during the first two years. These lectures are supplemented with many mathematical explanations and much support material. After the fourth semester of studies, graduate work begins, and Quantum Mechanics II - Symmetries, Statistical Mechanics and Ther modynamics, Relativistic Quantum Mechanics, Quantum Electrodynamics, the Gauge Theory of Weak Interactions, and Quantum Chromo dynamics are obligatory.
An Introduction To Quantum Field Theory
Author: Michael E. Peskin
Publisher: CRC Press
ISBN: 0429972105
Category : Science
Languages : en
Pages : 865
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Publisher: CRC Press
ISBN: 0429972105
Category : Science
Languages : en
Pages : 865
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Mathematics of Quantization and Quantum Fields
Author: Jan Dereziński
Publisher: Cambridge University Press
ISBN: 1107011116
Category : Science
Languages : en
Pages : 687
Book Description
A unique and definitive review of mathematical aspects of quantization and quantum field theory for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1107011116
Category : Science
Languages : en
Pages : 687
Book Description
A unique and definitive review of mathematical aspects of quantization and quantum field theory for graduate students and researchers.
Quantization of Fields with Constraints
Author: Dmitri Gitman
Publisher: Springer Science & Business Media
ISBN: 364283938X
Category : Science
Languages : en
Pages : 301
Book Description
Gauge field theories underlie all models now used in elementary particle physics. These theories refer to the class of singular theories which are also theories with constraints. The quantization of singular theories remains one of the key problems of quantum field theory and is being intensively discussed in the literature. This book is an attempt to fill the need for a comprehensive analysis of this problem, which has not heretofore been met by the available monographs and reviews. The main topics are canonical quantization and the path integral method. In addition, the Lagrangian BRST quantization is completely described, for the first time in a monograph. The book also presents a number of original results obtained by the authors, in particular, a complete description of the physical sector of an arbitrary gauge theory, quantization of singular theories with higher theories with time-dependent constraints, and correct derivatives, quantization of canonical quantization of theories of a relativistic point-like particle. As a general illustration we present quantization of field theories such as electrodynamics, Yang-Mills theory, and gravity. It should be noted that this monograph is aimed not only at giving the reader the rules of quantization according to the principle "if you do it this way, it will be good", but also at presenting strong arguments based on the modem interpretation of the classical and quantum theories which show that these methods· are the natural, if not the only possible ones.
Publisher: Springer Science & Business Media
ISBN: 364283938X
Category : Science
Languages : en
Pages : 301
Book Description
Gauge field theories underlie all models now used in elementary particle physics. These theories refer to the class of singular theories which are also theories with constraints. The quantization of singular theories remains one of the key problems of quantum field theory and is being intensively discussed in the literature. This book is an attempt to fill the need for a comprehensive analysis of this problem, which has not heretofore been met by the available monographs and reviews. The main topics are canonical quantization and the path integral method. In addition, the Lagrangian BRST quantization is completely described, for the first time in a monograph. The book also presents a number of original results obtained by the authors, in particular, a complete description of the physical sector of an arbitrary gauge theory, quantization of singular theories with higher theories with time-dependent constraints, and correct derivatives, quantization of canonical quantization of theories of a relativistic point-like particle. As a general illustration we present quantization of field theories such as electrodynamics, Yang-Mills theory, and gravity. It should be noted that this monograph is aimed not only at giving the reader the rules of quantization according to the principle "if you do it this way, it will be good", but also at presenting strong arguments based on the modem interpretation of the classical and quantum theories which show that these methods· are the natural, if not the only possible ones.
A Modern Introduction to Quantum Field Theory
Author: Michele Maggiore
Publisher: Oxford University Press
ISBN: 0198520735
Category : Science
Languages : en
Pages : 308
Book Description
The importance and the beauty of modern quantum field theory resides in the power and variety of its methods and ideas, which find application in domains as different as particle physics, cosmology, condensed matter, statistical mechanics and critical phenomena. This book introduces the reader to the modern developments in a manner which assumes no previous knowledge of quantum field theory. Along with standard topics like Feynman diagrams, the book discusses effective lagrangians, renormalization group equations, the path integral formulation, spontaneous symmetry breaking and non-abelian gauge theories. The inclusion of more advanced topics will also make this a most useful book for graduate students and researchers.
Publisher: Oxford University Press
ISBN: 0198520735
Category : Science
Languages : en
Pages : 308
Book Description
The importance and the beauty of modern quantum field theory resides in the power and variety of its methods and ideas, which find application in domains as different as particle physics, cosmology, condensed matter, statistical mechanics and critical phenomena. This book introduces the reader to the modern developments in a manner which assumes no previous knowledge of quantum field theory. Along with standard topics like Feynman diagrams, the book discusses effective lagrangians, renormalization group equations, the path integral formulation, spontaneous symmetry breaking and non-abelian gauge theories. The inclusion of more advanced topics will also make this a most useful book for graduate students and researchers.
Problem Book in Quantum Field Theory
Author: Voja Radovanovic
Publisher: Springer Science & Business Media
ISBN: 3540770143
Category : Science
Languages : en
Pages : 242
Book Description
The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers.
Publisher: Springer Science & Business Media
ISBN: 3540770143
Category : Science
Languages : en
Pages : 242
Book Description
The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers.
Introduction To Quantum Field Theory
Author: Shau-jin Chang
Publisher: World Scientific
ISBN: 9814507555
Category : Science
Languages : en
Pages : 396
Book Description
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the second part ranges from variational principles to path integrals, discusses gauge theory, the renormalization group and classical solutions together with their applications.
Publisher: World Scientific
ISBN: 9814507555
Category : Science
Languages : en
Pages : 396
Book Description
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the second part ranges from variational principles to path integrals, discusses gauge theory, the renormalization group and classical solutions together with their applications.
An Introduction to Non-Perturbative Foundations of Quantum Field Theory
Author: Franco Strocchi
Publisher: OUP Oxford
ISBN: 0191651346
Category : Science
Languages : en
Pages : 608
Book Description
Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. As a reaction to these consistency problems one may take the position that they are related to our ignorance of the physics of small distances and that QFT is only an effective theory, so that radically new ideas are needed for a consistent quantum theory of relativistic interactions (in 3+1 dimensions). The book starts by discussing the conflict between locality or hyperbolicity and positivity of the energy for relativistic wave equations, which marks the origin of quantum field theory, and the mathematical problems of the perturbative expansion (canonical quantization, interaction picture, non-Fock representation, asymptotic convergence of the series etc.). The general physical principles of positivity of the energy, Poincare' covariance and locality provide a substitute for canonical quantization, qualify the non-perturbative foundation and lead to very relevant results, like the Spin-statistics theorem, TCP symmetry, a substitute for canonical quantization, non-canonical behaviour, the euclidean formulation at the basis of the functional integral approach, the non-perturbative definition of the S-matrix (LSZ, Haag-Ruelle-Buchholz theory). A characteristic feature of gauge field theories is Gauss' law constraint. It is responsible for the conflict between locality of the charged fields and positivity, it yields the superselection of the (unbroken) gauge charges, provides a non-perturbative explanation of the Higgs mechanism in the local gauges, implies the infraparticle structure of the charged particles in QED and the breaking of the Lorentz group in the charged sectors. A non-perturbative proof of the Higgs mechanism is discussed in the Coulomb gauge: the vector bosons corresponding to the broken generators are massive and their two point function dominates the Goldstone spectrum, thus excluding the occurrence of massless Goldstone bosons. The solution of the U(1) problem in QCD, the theta vacuum structure and the inevitable breaking of the chiral symmetry in each theta sector are derived solely from the topology of the gauge group, without relying on the semiclassical instanton approximation.
Publisher: OUP Oxford
ISBN: 0191651346
Category : Science
Languages : en
Pages : 608
Book Description
Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. As a reaction to these consistency problems one may take the position that they are related to our ignorance of the physics of small distances and that QFT is only an effective theory, so that radically new ideas are needed for a consistent quantum theory of relativistic interactions (in 3+1 dimensions). The book starts by discussing the conflict between locality or hyperbolicity and positivity of the energy for relativistic wave equations, which marks the origin of quantum field theory, and the mathematical problems of the perturbative expansion (canonical quantization, interaction picture, non-Fock representation, asymptotic convergence of the series etc.). The general physical principles of positivity of the energy, Poincare' covariance and locality provide a substitute for canonical quantization, qualify the non-perturbative foundation and lead to very relevant results, like the Spin-statistics theorem, TCP symmetry, a substitute for canonical quantization, non-canonical behaviour, the euclidean formulation at the basis of the functional integral approach, the non-perturbative definition of the S-matrix (LSZ, Haag-Ruelle-Buchholz theory). A characteristic feature of gauge field theories is Gauss' law constraint. It is responsible for the conflict between locality of the charged fields and positivity, it yields the superselection of the (unbroken) gauge charges, provides a non-perturbative explanation of the Higgs mechanism in the local gauges, implies the infraparticle structure of the charged particles in QED and the breaking of the Lorentz group in the charged sectors. A non-perturbative proof of the Higgs mechanism is discussed in the Coulomb gauge: the vector bosons corresponding to the broken generators are massive and their two point function dominates the Goldstone spectrum, thus excluding the occurrence of massless Goldstone bosons. The solution of the U(1) problem in QCD, the theta vacuum structure and the inevitable breaking of the chiral symmetry in each theta sector are derived solely from the topology of the gauge group, without relying on the semiclassical instanton approximation.
What Is a Quantum Field Theory?
Author: Michel Talagrand
Publisher: Cambridge University Press
ISBN: 1316510271
Category : Science
Languages : en
Pages : 759
Book Description
A lively and erudite introduction for readers with a background in undergraduate mathematics but no previous knowledge of physics.
Publisher: Cambridge University Press
ISBN: 1316510271
Category : Science
Languages : en
Pages : 759
Book Description
A lively and erudite introduction for readers with a background in undergraduate mathematics but no previous knowledge of physics.