An Equivalent Domain Integral Method for Three-Dimensional Mixed-Mode Fracture Problems

An Equivalent Domain Integral Method for Three-Dimensional Mixed-Mode Fracture Problems PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722180737
Category :
Languages : en
Pages : 62

Get Book Here

Book Description
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program. Shivakumar, K. N. and Raju, I. S. Unspecified Center...

An Equivalent Domain Integral Method for Three-Dimensional Mixed-Mode Fracture Problems

An Equivalent Domain Integral Method for Three-Dimensional Mixed-Mode Fracture Problems PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722180737
Category :
Languages : en
Pages : 62

Get Book Here

Book Description
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program. Shivakumar, K. N. and Raju, I. S. Unspecified Center...

An Equivalent Domain Integral Method for Three-dimensional Mixed-mode Fracture Problems

An Equivalent Domain Integral Method for Three-dimensional Mixed-mode Fracture Problems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 64

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 556

Get Book Here

Book Description


Fracture of Functionally Graded Materials

Fracture of Functionally Graded Materials PDF Author: G.H. Paulino
Publisher: Elsevier
ISBN: 9780080441603
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
Scientific research on functionally graded materials (FGM's) looks at functions of gradients in materials comprising thermodynamic, mechanical, chemical, optical, electromagnetic, and/or biological aspects. This collection of technical papers represents current research interests with regard to the fracture behaviour of FGM's. The papers provide a balance between theoretical, computational, and experimental techniques. It also indicates areas for increased development, such as constraint effects, full experimental characterization of engineering FGM's under static and dynamic loading, development of fracture criteria with predictive capability, multiphysics and multiscale failure considerations, and connection of research with industrial applications.

Fatigue and Fracture Mechanics

Fatigue and Fracture Mechanics PDF Author: Tina Louise Panontin
Publisher: ASTM International
ISBN: 0803124864
Category : Fatigue
Languages : en
Pages : 922

Get Book Here

Book Description


Comprehensive Structural Integrity

Comprehensive Structural Integrity PDF Author: I. Milne
Publisher: Elsevier
ISBN: 0080437494
Category :
Languages : en
Pages : 749

Get Book Here

Book Description


The Boundary Element Method, Volume 2

The Boundary Element Method, Volume 2 PDF Author: M. H. Aliabadi
Publisher: John Wiley & Sons
ISBN: 9780470842980
Category : Technology & Engineering
Languages : en
Pages : 614

Get Book Here

Book Description
The boundary element method (BEM) is a modern numerical technique, which has enjoyed increasing popularity over the last two decades, and is now an established alternative to traditional computational methods of engineering analysis. The main advantage of the BEM is its unique ability to provide a complete solution in terms of boundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with a comprehensive and up-to-date account of the boundary element method and its application to solving engineering problems. Each volume is a self-contained book including a substantial amount of material not previously covered by other text books on the subject. Volume 1 covers applications to heat transfer, acoustics, electrochemistry and fluid mechanics problems, while volume 2 concentrates on solids and structures, describing applications to elasticity, plasticity, elastodynamics, fracture mechanics and contact analysis. The early chapters are designed as a teaching text for final year undergraduate courses. Both volumes reflect the experience of the authors over a period of more than twenty years of boundary element research. This volume, Applications in Solids and Structures, provides a comprehensive presentation of the BEM from fundamentals to advanced engineering applications and encompasses: Elasticity for 2D, 3D and Plates and Shells Non-linear, Transient and Thermal Stress Analysis Crack Growth and Multi-body Contact Mechanics Sensitivity Analysis and Optimisation Analysis of Assembled Structures. An important feature of this book is the in-depth presentation of BEM formulations in all the above fields, including detailed discussions of the basic theory, numerical algorithms and where possible simple examples are included, as well as test results for practical engineering applications of the method. Although most of the methods presented are the latest developments in the field, the author has included some simple techniques, which are helpful in understanding the computer implementation of BEM. Another notable feature is the comprehensive presentation of a new generation of boundary elements known as the Dual Boundary Element Method. Written by an internationally recognised authority in the field, this is essential reading for postgraduates, researchers and practitioners in Aerospace, Mechanical and Civil Engineering and Applied Mathematics.

The Virtual Crack Closure Technique: History, Approach and Applications

The Virtual Crack Closure Technique: History, Approach and Applications PDF Author: Ronald Krueger
Publisher:
ISBN:
Category :
Languages : en
Pages : 66

Get Book Here

Book Description
An overview of the virtual crack closure technique is presented. The approach used is discussed, the history summarized, and insight into its applications provided. Equations for two-dimensional quadrilateral elements with linear and quadratic shape functions are given. Formula for applying the technique in conjuction with three-dimensional solid elements as well as plate/shell elements are also provided. Necessary modifications for the use of the method with geometrically nonlinear finite element analysis and corrections required for elements at the crack tip with different lengths and widths are discussed. The problems associated with cracks or delaminations propagating between different materials are mentioned briefly, as well as a strategy to minimize these problems. Due to an increased interest in using a fracture mechanics based approach to assess the damage tolerance of composite structures in the design phase and during certification, the engineering problems selected as examples and given as references focus on the application of the technique to components made of composite materials.

Fracture, Fatigue, Failure, and Damage Evolution, Volume 5

Fracture, Fatigue, Failure, and Damage Evolution, Volume 5 PDF Author: Jay Carroll
Publisher: Springer
ISBN: 3319069772
Category : Science
Languages : en
Pages : 249

Get Book Here

Book Description
Fracture, Fatigue, Failure and Damage Evolution, Volume 5: Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics, the fifth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Mixed Mode Fracture I: Emphasis on Modeling Mixed Mode Fracture II: Emphasis on Experimental Measurements Full-Field Measurements of Fracture Microscale & Microstructural Effects on Mechanical Behavior I: Nanoscale Effects Microscale & Microstructural Effects on Mechanical Behavior II: MEMS Microscale & Microstructural Effects on Mechanical Behavior III: Microstructure Microscale & Microstructural Effects on Mechanical Behavior IV: Shape Memory Alloys Fracture & Fatigue of Composites Fracture & Fatigue for Engineering Applications Wave-Based Techniques in Fracture & Fatigue I Wave-Based Techniques in Fracture & Fatigue II: Acoustic Emissions

Comprehensive Structural Integrity

Comprehensive Structural Integrity PDF Author: Ian Milne
Publisher: Elsevier
ISBN: 0080490735
Category : Business & Economics
Languages : en
Pages : 4647

Get Book Here

Book Description
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.