Author: Wayne Aitken
Publisher: American Mathematical Soc.
ISBN: 0821804073
Category : Mathematics
Languages : en
Pages : 189
Book Description
The following gives a development of Arakelov theory general enough to handle not only regular arithmetic surfaces but also a large class of arithmetic surfaces whose generic fiber has singularities. This development culminates in an arithmetic Riemann-Roch theorem for such arithmetic surfaces. The first part of the memoir gives a treatment of Deligne's functorial intersection theory, and the second develops a class of intersection functions for singular curves which behaves analogously to the canonical Green's functions introduced by Arakelov for smooth curves.
An Arithmetic Riemann-Roch Theorem for Singular Arithmetic Surfaces
Author: Wayne Aitken
Publisher: American Mathematical Soc.
ISBN: 0821804073
Category : Mathematics
Languages : en
Pages : 189
Book Description
The following gives a development of Arakelov theory general enough to handle not only regular arithmetic surfaces but also a large class of arithmetic surfaces whose generic fiber has singularities. This development culminates in an arithmetic Riemann-Roch theorem for such arithmetic surfaces. The first part of the memoir gives a treatment of Deligne's functorial intersection theory, and the second develops a class of intersection functions for singular curves which behaves analogously to the canonical Green's functions introduced by Arakelov for smooth curves.
Publisher: American Mathematical Soc.
ISBN: 0821804073
Category : Mathematics
Languages : en
Pages : 189
Book Description
The following gives a development of Arakelov theory general enough to handle not only regular arithmetic surfaces but also a large class of arithmetic surfaces whose generic fiber has singularities. This development culminates in an arithmetic Riemann-Roch theorem for such arithmetic surfaces. The first part of the memoir gives a treatment of Deligne's functorial intersection theory, and the second develops a class of intersection functions for singular curves which behaves analogously to the canonical Green's functions introduced by Arakelov for smooth curves.
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127
Author: Gerd Faltings
Publisher: Princeton University Press
ISBN: 1400882478
Category : Mathematics
Languages : en
Pages : 118
Book Description
The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.
Publisher: Princeton University Press
ISBN: 1400882478
Category : Mathematics
Languages : en
Pages : 118
Book Description
The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book is to give a concise introduction to the necessary techniques, and to present a simplified and extended version of the proof. It should enable mathematicians with a background in arithmetic algebraic geometry to understand some basic techniques in the rapidly evolving field of Arakelov-theory.
Algebraic Curves and Riemann Surfaces
Author: Rick Miranda
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414
Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414
Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous $n$-tournaments
Author: Gregory L. Cherlin
Publisher: American Mathematical Soc.
ISBN: 9780821808368
Category : Mathematics
Languages : en
Pages : 188
Book Description
In this book, Ramsey theoretic methods introduced by Lachlan are applied to classify the countable homogeneous directed graphs. This is an uncountable collection, and this book presents the first explicit classification result covering an uncountable family. The author's aim is to demonstrate the potential of Lachlan's method for systematic use.
Publisher: American Mathematical Soc.
ISBN: 9780821808368
Category : Mathematics
Languages : en
Pages : 188
Book Description
In this book, Ramsey theoretic methods introduced by Lachlan are applied to classify the countable homogeneous directed graphs. This is an uncountable collection, and this book presents the first explicit classification result covering an uncountable family. The author's aim is to demonstrate the potential of Lachlan's method for systematic use.
Lectures on K3 Surfaces
Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1316797252
Category : Mathematics
Languages : en
Pages : 499
Book Description
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Publisher: Cambridge University Press
ISBN: 1316797252
Category : Mathematics
Languages : en
Pages : 499
Book Description
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
CR-Geometry and Deformations of Isolated Singularities
Author: Ragnar-Olaf Buchweitz
Publisher: American Mathematical Soc.
ISBN: 082180541X
Category : Mathematics
Languages : en
Pages : 111
Book Description
In this power we show how to compute the parameter space [italic capital]X for the versal deformation of an isolated singularity ([italic capital]V, 0) under the assumptions [italic]dim [italic capital]V [greater than or equal to symbol] 4, depth {0} [italic capital]V [greater than or equal to symbol] 3, from the CR-structure on a link [italic capital]M of the singularity. We do this by showing that the space [italic capital]X is isomorphic to the space (denoted here by [script capital]K[subscript italic capital]M) associated to [italic capital]M by Kuranishi in 1977. In fact we produce isomorphisms of the associated complete local rings by producing quasi-isomorphisms of the controlling differential graded Lie algebras for the corresponding formal deformation theories.
Publisher: American Mathematical Soc.
ISBN: 082180541X
Category : Mathematics
Languages : en
Pages : 111
Book Description
In this power we show how to compute the parameter space [italic capital]X for the versal deformation of an isolated singularity ([italic capital]V, 0) under the assumptions [italic]dim [italic capital]V [greater than or equal to symbol] 4, depth {0} [italic capital]V [greater than or equal to symbol] 3, from the CR-structure on a link [italic capital]M of the singularity. We do this by showing that the space [italic capital]X is isomorphic to the space (denoted here by [script capital]K[subscript italic capital]M) associated to [italic capital]M by Kuranishi in 1977. In fact we produce isomorphisms of the associated complete local rings by producing quasi-isomorphisms of the controlling differential graded Lie algebras for the corresponding formal deformation theories.
The Operator Hilbert Space $OH$, Complex Interpolation and Tensor Norms
Author: Gilles Pisier
Publisher: American Mathematical Soc.
ISBN: 082180474X
Category : Mathematics
Languages : en
Pages : 119
Book Description
In the recently developed duality theory of operator spaces, bounded operators are replaced by 'completely bounded' ones, isomorphism by 'complete isomorphisms' and Banach spaces by 'operator spaces'. This allows for distinguishing between the various ways in which a given Banach space can be embedded isometrically into [italic capital]B([italic capital]H) (with H being Hilbert). One of the main results is the observation that there is a central object in this class: there is a unique self dual Hilbertian operator space (which we denote by [italic capitals]OH) which seems to play the same central role in the category of operator spaces that Hilbert spaces play in the category of Banach spaces.
Publisher: American Mathematical Soc.
ISBN: 082180474X
Category : Mathematics
Languages : en
Pages : 119
Book Description
In the recently developed duality theory of operator spaces, bounded operators are replaced by 'completely bounded' ones, isomorphism by 'complete isomorphisms' and Banach spaces by 'operator spaces'. This allows for distinguishing between the various ways in which a given Banach space can be embedded isometrically into [italic capital]B([italic capital]H) (with H being Hilbert). One of the main results is the observation that there is a central object in this class: there is a unique self dual Hilbertian operator space (which we denote by [italic capitals]OH) which seems to play the same central role in the category of operator spaces that Hilbert spaces play in the category of Banach spaces.
Algebraic Geometry and Arithmetic Curves
Author: Qing Liu
Publisher: Oxford University Press
ISBN: 0191547808
Category : Mathematics
Languages : en
Pages : 593
Book Description
This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.
Publisher: Oxford University Press
ISBN: 0191547808
Category : Mathematics
Languages : en
Pages : 593
Book Description
This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.
Classification of Simple $C$*-algebras: Inductive Limits of Matrix Algebras over Trees
Author: Liangqing Li
Publisher: American Mathematical Soc.
ISBN: 0821805967
Category : Mathematics
Languages : en
Pages : 138
Book Description
In this paper, it is shown that the simple unital C*-algebras arising as inductive limits of sequences of finite direct sums of matrix algebras over [italic capital]C([italic capital]X[subscript italic]i), where [italic capital]X[subscript italic]i are arbitrary variable trees, are classified by K-theoretical and tracial data. This result generalizes the result of George Elliott of the case of [italic capital]X[subscript italic]i = [0, 1]. The added generality is useful in the classification of more general inductive limit C*-algebras.
Publisher: American Mathematical Soc.
ISBN: 0821805967
Category : Mathematics
Languages : en
Pages : 138
Book Description
In this paper, it is shown that the simple unital C*-algebras arising as inductive limits of sequences of finite direct sums of matrix algebras over [italic capital]C([italic capital]X[subscript italic]i), where [italic capital]X[subscript italic]i are arbitrary variable trees, are classified by K-theoretical and tracial data. This result generalizes the result of George Elliott of the case of [italic capital]X[subscript italic]i = [0, 1]. The added generality is useful in the classification of more general inductive limit C*-algebras.
Two Classes of Riemannian Manifolds Whose Geodesic Flows Are Integrable
Author: Kazuyoshi Kiyohara
Publisher: American Mathematical Soc.
ISBN: 0821806408
Category : Mathematics
Languages : en
Pages : 159
Book Description
Two classes of manifolds whose geodesic flows are integrable are defined, and their global structures are investigated. They are called Liouville manifolds and Kahler-Liouville manifolds respectively. In each case, the author finds several invariants with which they are partly classified. The classification indicates, in particular, that these classes contain many new examples of manifolds with integrable geodesic flow.
Publisher: American Mathematical Soc.
ISBN: 0821806408
Category : Mathematics
Languages : en
Pages : 159
Book Description
Two classes of manifolds whose geodesic flows are integrable are defined, and their global structures are investigated. They are called Liouville manifolds and Kahler-Liouville manifolds respectively. In each case, the author finds several invariants with which they are partly classified. The classification indicates, in particular, that these classes contain many new examples of manifolds with integrable geodesic flow.