Author: Mark Brian Tischler
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.
Aircraft and Rotorcraft System Identification
Author: Mark Brian Tischler
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.
Aircraft System Identification
Author: Eugene Morelli
Publisher: Sunflyte Enterprises
ISBN: 9780997430615
Category : Technology & Engineering
Languages : en
Pages : 618
Book Description
This book provides a comprehensive overview of both the theoretical underpinnings and the practical application of aircraft modeling based on experimental data also known as aircraft system identification. Much of the material presented comes from the authors own extensive research and teaching activities at the NASA Langley Research Center, and is based on real-world applications of system identification to aircraft. The book uses actual flight-test and wind-tunnel data for case studies and examples, and is a valuable resource for researchers and practicing engineers, as well as a textbook for postgraduate and senior-level courses. [...] The methods and algorithms explained in the book are implemented in a NASA software toolbox called SIDPAC (System IDentification Programs for AirCraft). SIDPAC is written in MATLAB®, and is available by request from NASA Langley Research Center. SIDPAC is composed of many different tools that implement a wide variety of approaches explained fully in the book. These tools can be readily applied to solve aircraft system identification problems.
Publisher: Sunflyte Enterprises
ISBN: 9780997430615
Category : Technology & Engineering
Languages : en
Pages : 618
Book Description
This book provides a comprehensive overview of both the theoretical underpinnings and the practical application of aircraft modeling based on experimental data also known as aircraft system identification. Much of the material presented comes from the authors own extensive research and teaching activities at the NASA Langley Research Center, and is based on real-world applications of system identification to aircraft. The book uses actual flight-test and wind-tunnel data for case studies and examples, and is a valuable resource for researchers and practicing engineers, as well as a textbook for postgraduate and senior-level courses. [...] The methods and algorithms explained in the book are implemented in a NASA software toolbox called SIDPAC (System IDentification Programs for AirCraft). SIDPAC is written in MATLAB®, and is available by request from NASA Langley Research Center. SIDPAC is composed of many different tools that implement a wide variety of approaches explained fully in the book. These tools can be readily applied to solve aircraft system identification problems.
Flight Vehicle System Identification
Author: Ravindra V. Jategaonkar
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : Science
Languages : en
Pages : 568
Book Description
This valuable volume offers a systematic approach to flight vehicle system identification and exhaustively covers the time domain methodology. It addresses in detail the theoretical and practical aspects of various parameter estimation methods, including those in the stochastic framework and focusing on nonlinear models, cost functions, optimization methods, and residual analysis. A pragmatic and balanced account of pros and cons in each case is provided. The book also presents data gathering and model validation, and covers both large-scale systems and high-fidelity modeling. Real world problems dealing with a variety of flight vehicle applications are addressed and solutions are provided. Examples encompass such problems as estimation of aerodynamics, stability, and control derivatives from flight data, flight path reconstruction, nonlinearities in control surface effectiveness, stall hysteresis, unstable aircraft, and other critical considerations.
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : Science
Languages : en
Pages : 568
Book Description
This valuable volume offers a systematic approach to flight vehicle system identification and exhaustively covers the time domain methodology. It addresses in detail the theoretical and practical aspects of various parameter estimation methods, including those in the stochastic framework and focusing on nonlinear models, cost functions, optimization methods, and residual analysis. A pragmatic and balanced account of pros and cons in each case is provided. The book also presents data gathering and model validation, and covers both large-scale systems and high-fidelity modeling. Real world problems dealing with a variety of flight vehicle applications are addressed and solutions are provided. Examples encompass such problems as estimation of aerodynamics, stability, and control derivatives from flight data, flight path reconstruction, nonlinearities in control surface effectiveness, stall hysteresis, unstable aircraft, and other critical considerations.
System Identification
Author: Rik Pintelon
Publisher: John Wiley & Sons
ISBN: 0471660957
Category : Science
Languages : en
Pages : 644
Book Description
Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.
Publisher: John Wiley & Sons
ISBN: 0471660957
Category : Science
Languages : en
Pages : 644
Book Description
Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.
Flight Test System Identification
Author: Roger Larsson
Publisher: Linköping University Electronic Press
ISBN: 9176850706
Category : Science
Languages : en
Pages : 326
Book Description
With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.
Publisher: Linköping University Electronic Press
ISBN: 9176850706
Category : Science
Languages : en
Pages : 326
Book Description
With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.
Mastering System Identification in 100 Exercises
Author: Johan Schoukens
Publisher: John Wiley & Sons
ISBN: 1118218507
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource.
Publisher: John Wiley & Sons
ISBN: 1118218507
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource.
Rotorcraft System Identification
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 304
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 304
Book Description
Principles of System Identification
Author: Arun K. Tangirala
Publisher: CRC Press
ISBN: 143989602X
Category : Technology & Engineering
Languages : en
Pages : 881
Book Description
Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397
Publisher: CRC Press
ISBN: 143989602X
Category : Technology & Engineering
Languages : en
Pages : 881
Book Description
Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397
Aircraft Fuel Systems
Author: Roy Langton
Publisher: John Wiley & Sons
ISBN: 047005946X
Category : Science
Languages : en
Pages : 366
Book Description
All aspects of fuel products and systems including fuel handling, quantity gauging and management functions for both commercial (civil) and military applications. The fuel systems on board modern aircraft are multi-functional, fully integrated complex networks. They are designed to provide a proper and reliable management of fuel resources throughout all phases of operation, notwithstanding changes in altitude or speed, as well as to monitor system functionality and advise the flight crew of any operational anomalies that may develop. Collates together a wealth of information on fuel system design that is currently disseminated throughout the literature. Authored by leading industry experts from Airbus and Parker Aerospace. Includes chapters on basic system functions, features and functions unique to military aircraft, fuel handling, fuel quantity gauging and management, fuel systems safety and fuel systems design and development. Accompanied by a companion website housing a MATLAB/SIMULINK model of a modern aircraft fuel system that allows the user to set up flight conditions, investigate the effects of equipment failures and virtually fly preset missions. Aircraft Fuel Systems provides a timely and invaluable resource for engineers, project and programme managers in the equipment supply and application communities, as well as for graduate and postgraduate students of mechanical and aerospace engineering. It constitutes an invaluable addition to the established Wiley Aerospace Series.
Publisher: John Wiley & Sons
ISBN: 047005946X
Category : Science
Languages : en
Pages : 366
Book Description
All aspects of fuel products and systems including fuel handling, quantity gauging and management functions for both commercial (civil) and military applications. The fuel systems on board modern aircraft are multi-functional, fully integrated complex networks. They are designed to provide a proper and reliable management of fuel resources throughout all phases of operation, notwithstanding changes in altitude or speed, as well as to monitor system functionality and advise the flight crew of any operational anomalies that may develop. Collates together a wealth of information on fuel system design that is currently disseminated throughout the literature. Authored by leading industry experts from Airbus and Parker Aerospace. Includes chapters on basic system functions, features and functions unique to military aircraft, fuel handling, fuel quantity gauging and management, fuel systems safety and fuel systems design and development. Accompanied by a companion website housing a MATLAB/SIMULINK model of a modern aircraft fuel system that allows the user to set up flight conditions, investigate the effects of equipment failures and virtually fly preset missions. Aircraft Fuel Systems provides a timely and invaluable resource for engineers, project and programme managers in the equipment supply and application communities, as well as for graduate and postgraduate students of mechanical and aerospace engineering. It constitutes an invaluable addition to the established Wiley Aerospace Series.
Aircraft Control and Simulation
Author: Brian L. Stevens
Publisher: John Wiley & Sons
ISBN: 1118870972
Category : Technology & Engineering
Languages : en
Pages : 768
Book Description
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 1118870972
Category : Technology & Engineering
Languages : en
Pages : 768
Book Description
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.